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HIGHER ORDER GENOCCHI, EULER POLYNOMIALS

ASSOCIATED WITH q-BERNSTEIN TYPE

POLYNOMIALS

Serkan Aracı and Dilek Erdal

Abstract. The main aim of this paper is to give some relationships
between q-Bernstein, higher order genocchi and Euler polynomials.

1. Introduction, Definitions and Notations

Throughout this paper, C denotes the complex number field and N
the set of natural numbers. We assume that q ∈ C with |q| < 1 and

that the q-number is defined by [x]q = qx−1
q−1 (see [1],[2],[5]-[18]). The

generating functions of the higher order Genocchi , Euler polynomials
and q-Bernstein polynomials, respectively, can be defined as follows:
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(1.2) S(w) (x, t) =
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, for |t| < π

(see [13],[18],[19]) and
(1.3)

Fk (x, t; q) =

(
t [x]q

)k
k!

et[1−x]q =
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Bk,n (x; q)
tn

n!
, t ∈ C, k = 0, 1, · · · , n.

where limq→1 Fk (x, t; q) = Fk (t, x) = (tx)k

k! e
t(1−x) (see [3]).
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By (1.1) and (1.2) we easily see that

(1.4) D(w) (x, t) = twS(w) (x, t)

From the above, we have
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By comparing coefficients tn in the both sides of the above equation
for n ∈ N ,
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(n+ w)!

(n)!
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n (x)

These polynomials have explicit formulas, respectively, as follows:
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(1.9) Bk,n (x; q) =
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)
[x]kq [1− x]n−kq , x ∈ [0, 1]

where G
(w)
k = G

(w)
k (0) , E

(w)
k = E

(w)
k (0) are higher order Genocchi

and Euler numbers, respectively.
The purpose of this paper is to give some relationships between q-

Bernstein, higher order Genocchi and Euler polynomials.We derive the
higher order zeta functions from the Mellin transformation of this gener-
ating function which interpolates the higher order Genocchi polynomials
at negative integers and associated with q-Bernstein polynomials. Fur-
thermore, we define particular higher order zeta functions associated
with q-Bernstein polynomials.

2. New Identities On q-Bernstein Type Polynomials

Theorem 1. Let n ∈ N and 0 ≤ w ≤ n. We obtain

(2.1) Bw,n (x; q) =
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Proof. By using (1.1),(1.2) and (1.3) we have
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By using Cauchy product in the above we have
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From the above we have
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By comparing coefficients of tn

n! in the both sides of the above equa-
tion, we arrive at the desired result.

From (2.2), we get the following corollary:

Corollary 1. Let w ∈ N with w ≤ n. Then we have
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From (1.1), we have

D(w) (t, x) =

(
2t

et + 1

)
.

(
2t

et + 1

)
...

(
2t

et + 1

)
etx

= 2wtwext
∞∑

n1=0

(−1)
n1 en1t

∞∑
n2=0

(−1)
n2 en2t...

∞∑
nw=0

(−1)
nw enwt

= 2wtw
∞∑

n1,n2,...,nw=0

(−1)
n1+n2+...+nw e(x+n1+n2+...+nw)t(2.4)

=

∞∑
n=0

G(w)
n (x)

tn

n!
.

By using (2.4) we easily see that,
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= 2w
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For s ∈ C we have

1
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We define zeta function as follows:

(2.7)

ζ(w) (s, x) = 2w
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n1,...,nw=0

(−1)n1+n2+...+nw

(x+ n1 + n2 + ...+ nw)s
for < (s) > 0. (see [7])

Note that ζ(w) (s, x) can be continued analytically to an entire func-
tion of s ∈ C. By substituting s = −n into (2.5), we obtain (2.5) as
follows:

(2.8) ζ(w) (−n, x) =
n!

(n+ w)!
G

(w)
n+w (x) , (see [7])
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ζ(w) (s, 1) = ζ(w) (s) which is the zeta function, From (1.6) and (2.8)
for x = 0. We can easily derive the following equation:

(2.9) ζ(w) (−n) =
n!

(n+ w)!
G

(w)
n+w = E(w)

n

By using (2.1) and (2.9) we get following theorem:

Theorem 2. Let w ∈ N with w ≤ n. Then we have

Bw,n (x; q)(2.10)
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we define particular zeta function as follows:
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∑
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where F ≡ 1(mod2), by substituting λ = −1 into (2.11), we have
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F s2w
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)
By using (2.12) we obtain the following theorem:

Theorem 3. Let n ∈ N and F ≡ 1 (mod2) with 0 ≤ ai < F for
i = 1, 2, ..., w. We have

G
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From (2.10), (2.12) and (2.13) we get following theorem:
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Theorem 4. Let F ≡ 1 (mod2) , n ∈ N and 0 ≤ w ≤ n. One has
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