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ON THE MARCINKIEWICZ ZYGMUND LAWS OF

LARGE NUMBERS FOR NEGATIVELY DEPENDENT

RANDOM FIELDS

Mi-Hwa Ko

Abstract. In this paper we provide extensions of the Marcinkiewicz
Zygmund laws of large numbers for i.i.d random variables with mul-
tidimensional indices to the case of negatively dependent random
fields.

1. Introduction

Let Zd+, where d is a positive integer, denote the positive integer d-
dimensional lattice points. The notation m ≤ n, where m = (m1,m2,
· · · ,md) and n = (n1, n2, · · · , nd) in Zd+, means that mi ≤ ni for all 1 ≤
i ≤ d. The following multiindex version of the Marcinkiewicz Zygmund
strong laws of large numbers was given in Gut(1978).

Theorem A Let 0 < r < 2, and suppose that X, {Xi, i ∈ Zd+} is a

field of i.i.d random variables with partial sums Sn =
∑

i≤nXi, i ∈ Zd+.
If E|X|r(log+ |X|)d−1 <∞ and EX = 0 when 1 ≤ r < 2, then

(1.1)
Sn

|n|
1
r

→ 0 a.s. as n→∞.

Conversely, if (1.1) holds, then E|X|r(log+ |X|)d−1 < ∞ and EX = 0

when 1 ≤ r < 2. Here |n| =
∏d
i=1 ni and n→∞ means min1≤i≤dni →

∞, that is, all coordinates tend to infinity. Also, throughout the paper,
log+ x = max{1, log x}.

Next, we turn to our attention to the negative dependence. Two
random variables X and Y are negative quadrant dependent(NQD) if
P (X ≤ x, Y ≤ y) ≤ P (X ≤ x)P (Y ≤ y) for all x, y ∈ R. A finite family
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{X1, · · · , Xn} is said to be negatively associated(NA) if for any disjoint
subsets A,B ⊂ {1, · · · , n} and any real coordinatewise nondecreasing
functions f on RA, g on RB, Cov(f(Xi, i ∈ A), g(Xj , j ∈ B)) ≤ 0.
An infinite family of random variables is negatively associated if every
finite subfamily is NA. These concepts of negative dependences were
introduced by Lehmann(1966) and Joag-Dev and Proschan(1983), re-
spectively.

The notions of NQD and NA can be extended to the random variables
with multidimensional indices.

Following the proof of Theorem 2 of Etemadi(1981), Matula(1992)
proved the next strong law of large numbers for a field of identically
distributed pairwise NQD random variables.

Theorem B Let {Xi, i ∈ Zd+} be a field of identically distributed pair-

wise NQD random variables. If E|X1|(log+ |X1|)d−1 <∞ and EX1 = 0,
then

Sn
|n|
→ 0 a.s. as n→∞.

Since NA random variables are pairwise NQD random variables Theorem
B still holds under NA assumption.

In the case of d = 1, the Marcinkiewicz Zygmund strong law of large
numbers for identically distributed NA random variables was given by
Liu, Gan and Chen (1999) as follows.

Theorem C Let 0 < r < 2, and {Xn, n ≥ 1} be a sequence of identically
distributed NA random variables. If E|X1|r < ∞, and EX1 = 0 when
1 ≤ r < 2, then

Sn

n
1
r

→ 0 a.s. as n→∞.

Conversely if almost sure convergence holds as stated, then E|X1|r <∞
when 1 ≤ r < 2.

In this paper, we extend Theorem A to the negative dependent ran-
dom variables with multidimensional indices as well as generalize Theo-
rem C to the multidimensional case.

For convenience we use the parametrization α = 1
r i.e., 1 ≤ r < 2 is

translated into 1
2 < α ≤ 1 in Section 2.
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2. Main results

A first important observation is that inequalities which do not depend
on the (partial) order of the index set Zd+, such as the triangle inequality,
moment inequalities for sums, and so on remain valid automatically.
Namely, such relations only depend on the fact that if {Xk,k ∈ Zd+}
are random variables and {Sn,n ∈ Zd+} their partial sums, then Sn is
simply a sum of |n| random variables.

The following quantities and their asymptotic behavior will be crucial
to prove our main results. Let

g(ν) = card{n : |n| ≤ ν} and ∆g(ν) = card{n : |n| = ν} =
∑
|n|=ν

1.

The following asymptotics hold:

g(ν)

ν(log ν)d−1
→ 1

(d− 1)!
as ν →∞.

See Hardy(1954), Chapter XVIII(for the case d = 2; the general case is
analogous) and Titchmarsh(1951), Chapter 12.

Another important observation is that, since all terms we consider
are nonnegative, we may change the order of summation, in particular
as follows(cf. Gut(1978, 1980))∑

n

· · · =
∑
ν≥1

∑
|n|=ν

· · · .

More importantly, whenever the functions involving n only depend on
the value of |n|, the second summation can be simplified further. For
example, we have∑

n

1

|n|
P (|Xk| > ε|n|

1
p ) =

∑
ν≥1

∑
|n|=ν

1

|n|
P (|Xk| ≥ ε|n|

1
p )

=
∑
ν≥1

g(ν)
1

ν
P (|Xk| ≥ εν

1
p )

(see Gut and Spătăru(2003)). This observation should be kept in mind
thr oughout.

Theorem 2.1 Let 1
2 < α ≤ 1 and {Xi, i ∈ Zd+} be a field of identically

distributed negatively associated random variables with EX1 = 0. Then
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the following statements are equivalent:

(2.1) E|X1|
1
α (log+ |X1|)d−1 <∞ and EX1 = 0,

(2.2)
Sn − ESn
|n|α

→ 0 a.s. as n→∞,

where Sn =
∑

1≤i≤nXi.

Proof Since NA implies pairwise NQD and for α = 1 the multiindex ver-
sion of the Marcinkiewicz-Zygmund strong law for identically distributed
NQD random variables was proved by Matula(see Matula, 1992, Theo-
rem 2) we only need prove (2.2) for 1

2 < α < 1. We truncate at the level
|n|α and set

Yn = −|n|αI[Xn < −|n|α] +XnI[|Xn| ≤ |n|α] + |n|αI[Xn > |n|α].

According to the property of NA random variables in Joag-Dev and
Proschan (1983) Yn’s are still identically distributed NA random vari-
ables.

Assume that (2.1) holds for 1
2 < α < 1. Then

(2.3)
∑
n

P (Xn 6= Yn) =
∑
n

P (|X1| > |n|α)

=
∞∑
ν=1

P (|X1| > να)
∑
ν=|n|

1

=
∞∑
ν=1

P (|X1| > να)∆g(ν)

=
∞∑
ν=0

g(ν)P (να < |X1| ≤ (ν + 1)α)

≤ c
∞∑
ν=0

ν(log ν)d−1

(d− 1)!
P (να < |X1| ≤ (ν + 1)α)

≤ cE(|X1|
1
α (log+ |X1|)d−1) <∞ by (2.1),

where

g(ν) :=
∑
|n|≤ν

1 ∼ cν(log ν)d−1

(d− 1)!
as ν →∞

with a suitable positive constant c and ∆g(ν) = g(ν)− g(ν − 1).
Hence P (Xn 6= Yn, i.o.) = 0 by the Borel-Cantelli lemma.
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Thus
∑

n
Xn
|n|α converges almost surely if and only if

∑
n

Yn
|n|α converges

almost surely. According to the multiindex Kolmogorv’s convergence
criterion(see, e.g. Gabriel(1977)), to prove

∑
n

Yn
|n|α converges almost

surely we need to show that

(2.4)
∑
n

(Yn − EYn)

|n|α
converges almost surely

and

(2.5)
∑
n

EYn
|n|α

converges almost surely.

To prove (2.4), it is suffices to show that

(2.6) V ar(
∑
n

Yn
|n|α

) <∞ as n→∞.

Since Yn’s are identically distributed NA random variables we obtain

(2.7) V ar(
∑
n

Yn
|n|α

) ≤
∑
n

V ar(Yn)

|n|2α
≤

∑
n

EY 2
n

|n|2α

=
∑
n

P (Xn 6= Yn) +
∑
n

EX2
1I[|X1| ≤ |n|α]

|n|2α

= I + II.

It is clear that I <∞ by (2.3).
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Using the function f(ν) :=
∑
|n|≤ν 1 ∼

ν(log ν)d−1

(d−1)! as ν → ∞ with

differences ∆f = f(ν)− f(ν − 1) =
∑
|n|=ν 1, we estimate that

(2.8) II =
∞∑
ν=1

∆f(ν)
1

ν2α

να∑
j=1

EX2
11[j − 1 < |X1| ≤ j]

≤
∞∑
ν=1

∆f(ν)
1

ν2α

να∑
j=1

j2P [j − 1 < |X1| ≤ j]

≤ c
∞∑
ν=1

1

ν2α
∆f(ν)

να∑
i=1

iP [|X1| > i]

≤ c
∞∑
i=1

iP [|X1| > i]
∞∑

ν=i
1
α

ν−2α∆f(ν)

≤ c
∞∑
i=1

i
1
α
−1(log i)d−1P [|X1| > i]

≤ c
∞∑
i=1

i
1
α (log i)d−1P [i− 1 < |X1| ≤ i]

≤ cE|X1|
1
α (log+ |X1|)d−1 <∞ by (2.1).

So (2.4) holds. To prove (2.5) it is sufficient to show that

(2.9) |
∑
n

E(Yn)

|n|α
|

≤ |
∑
n

E(X11[|X1| ≤ |n|α])

|n|α
|+

∑
n

P (Xn 6= Yn)

= III + I <∞.
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Clearly I <∞ by (2.3). From (2.1) we have

III = |
∑
n

−E(X11[|X1| > |n|α])

|n|α
|

≤
∞∑
ν=1

1

να
∆g(ν)

∞∑
j=ν

jαP ((j − 1)α < |X1| ≤ jα)

≤
∞∑
j=1

jαP ((j − 1)α < |X1| ≤ jα)

j∑
ν=1

1

να
∆g(ν)

≤
∞∑
ν=0

g(ν)P (να < |X1| < (ν + 1)α)

≤ c
∞∑
ν=0

ν(log ν)d−1

(d− 1)!
P (να < |X1| ≤ (ν + 1)α)

≤ cE|X1|
1
α (log+ |X1|)d−1 <∞,

which yields (2.9). So (2.5) holds.

Hence by (2.4), (2.5) and Kolmogorov’s convergence criterion
∑

n
Yn
|n|α

converges almost surely, and thus
∑

n
Xn
|n|α converges almost surely. Fi-

nally, by the multiindex Kronecker lemma (cf. Moore(1966) for the
necessary multiindex partial sum formula) (2.2) holds.

For the converse, we note that (2.2) implies Xn
|n|α → 0 as n→∞ and

Xn
|n|α → 0 implies

∑
n P (|X1| > |n|α) <∞, which yields that the desired

moment condition (2.1) holds and obviously, that EX1 = 0.

Corollary 2.2 (Ko(2011)) Let {Xn,n ∈ Zd+} be a field of identically
distributed NA random variables. Then

(2.10) E|X1|(log+ |X1|)d−1 <∞ and EX1 = 0

if and only if

(2.11)
Sn
|n|
→ 0 a.s. n→∞.

Theorem 2.3 Let {Xi, i ∈ Zd+} be a field of identically distributed NA

random variables with EX1 = 0 and EX2
1 <∞. Then, for 1

2 < α < 1

(2.12)
Sn
|n|α

→ 0 in L
1
α and in probability a.s. n→∞.
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Proof for 1
2 < α

E(
|Sn|
|n|α

)
1
α ≤ ES2

n

|n|2α
)

1
2α ≤ (

|n|EX2
1

|n|2α
)

1
2α → 0 as |n| → ∞,

which establishes L
1
α -convergence and hence, in particular, also conver-

gence in probability.

Theorem 2.4 Let {Xi, i ∈ Zd+} be a field of identically distributed NA

random variables with mean zero and finite variances and let 1
2 < α < 1.

If

(2.13) |n|P (|X1| > |n|α)→ 0 as n→∞,

then

(2.14)
Sn
|n|α

→p 0 as n→∞,

where →p means convergence in probability and Sn =
∑

1≤k≤nXk.

Proof Define Y n
k , for k ≤ n

Y n
k = −|n|αI[Xk < −|n|α] +XkI[|Xk| ≤ |n|α] + |n|αI[Xk > |n|α]

and Tn =
∑

1≤k≤n Y
n
k . Clearly, Xk − Y n

k ’s are NA random variables.

Then, by assumptions (2.13) and EX2
1 <∞ and Chebyshev’s inequality

we obtain

P (
|Sn|
|n|α

> ε) ≤ P (
|Sn − Tn|
|n|α

>
ε

2
) + P (

|Tn|
|n|α

>
ε

2
)

≤ 4E(Sn − Tn)2

|n|2αε2
+

4
∑

1≤k≤nEX
2
k

|n|2αε2

≤
4
∑

1≤k≤nE(Xk − Y n
k )2

|n|2αε2
+

4|n|EY n
1

|n|2αε2

=
4|n|E|X1|2I[|X1| > |n|α]

|n|2αε2
+

4|n|E|X1|2I[|X1| ≤ |n|α]

|n|2αε2

+
4|n||n|2αP (|X1| > |n|α)

|n|2αε2

=
4|n|E(X2

1)

|n|2αε2
+ 4ε−2|n|P (|X1| > |n|α)→ 0 as n→∞.

Hence, the proof is complete.
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