DOI QR코드

DOI QR Code

Methods for sampling and analysis of marine microalgae in ship ballast tanks: a case study from Tampa Bay, Florida, USA

  • Garrett, Matthew J. (Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute) ;
  • Wolny, Jennifer L. (Florida Institute of Oceanography, University of South Florida) ;
  • Williams, B. James (Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute) ;
  • Dirks, Michael D. (Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute) ;
  • Brame, Julie A. (Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute) ;
  • Richardson, R. William (Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute)
  • Received : 2011.02.11
  • Accepted : 2011.04.14
  • Published : 2011.06.15

Abstract

Ballasting and deballasting of shipping vessels in foreign ports have been reported worldwide as a vector of introduction of non-native aquatic plants and animals. Recently, attention has turned to ballast water as a factor in the global increase of harmful algal blooms (HABs). Many species of microalgae, including harmful dinoflagellate species, can remain viable for months in dormant benthic stages (cysts) in ballast sediments. Over a period of four years, we surveyed ballast water and sediment of ships docked in two ports of Tampa Bay, Florida, USA. Sampling conditions encountered while sampling ballast water and sediments were vastly different between vessels. Since no single sample collection protocol could be applied, existing methods for sampling ballast were modified and new methods created to reduce time and labor necessary for the collection of high-quality, qualitative samples. Five methods were refined or developed, including one that allowed for a directed intake of water and sediments. From 63 samples, 1,633 dinoflagellate cysts and cyst-like cells were recovered. A native, cyst-forming, harmful dinoflagellate, Alexandrium balechii (Steidinger) F. J. R. Taylor, was collected, isolated, and cultured from the same vessel six months apart, indicating that ships exchanging ballast water in Tampa Bay have the potential to transport HAB species to other ports with similar ecologies, exposing them to non-native, potentially toxic blooms.

Keywords

References

  1. Andersen, R. A. & Kawachi, M. 2005. Traditional microalgae isolation techniques. In Andersen, R. A. (Ed.) Algal Culturing Techniques. Elsevier Academic Press, San Diego, CA, pp. 83-101.
  2. Baker, P., Baker, S. M. & Fajans, J. 2004. Nonindigenous marine species in the greater Tampa Bay ecosystem. Technical publication No. 02-04. Tampa Bay Estuary Program, St. Petersburg, FL, 131 pp.
  3. Bendis, B. 1999. Water quality trends in Tampa Bay, Florida. M.S. thesis, University of South Florida, St. Petersburg, FL, USA, 84 pp.
  4. Bolch, C. J. S. 1997. The use of sodium polytungstate for the separation and concentration of living dinoflagellate cysts from marine sediments. Phycologia 36:472-478. https://doi.org/10.2216/i0031-8884-36-6-472.1
  5. Carlton, J., Reid, D. & van Leeuwen, H. 1995. The role of shipping in the introduction of non-indigenous aquatic organisms to the coastal waters of the United States (other than the Great Lakes) and an analysis of controlled options. The National Sea Grant College Program/Connecticut Sea Grant Project R/ES-6, Groton, CT, 213 pp.
  6. Christy, A. E. 2003. 2002 monitoring of harmful algae in South Puget Sound and Wilapa Bay: species of concern and future considerations. J. Shellfish Res. 22:601-602.
  7. Cohen, A. N. & Carlton, J. T. 1998. Accelerating invasion rate in a highly invaded estuary. Science 279:555-558. https://doi.org/10.1126/science.279.5350.555
  8. Dodgshun, T. & Handley, S. 1997. Sampling ships' ballast water: a practical manual. Cawthron Report N 417. Ballast Water Programme, Nelson, 60 pp.
  9. Duggan, I. C., Bailey, S. A., van Overdijk, C. D. A. & MacIsaac, H. J. 2006. Invasion risk of active and diapausing invertebrates from residual ballast water in ships entering Chesapeake Bay. Mar. Ecol. Prog. Ser. 324:57-66. https://doi.org/10.3354/meps324057
  10. Fritz, L. & Triemer, R. E. 1985. A rapid simple technique utilizing Calcofluor White M2R for the visualization of dinoflagellate thecal plates. J. Phycol. 21:662-664.
  11. Griffiths, R. W., Schloesser, D. W., Leach, J. H. & Kovalak, W. P. 1991. Distribution and dispersal of the zebra mussel (Dreissena polymorpha) in the Great Lakes region. Can. J. Fish. Aquat. Sci. 48:1381-1388. https://doi.org/10.1139/f91-165
  12. Grosholz, E. D. 2005. Recent biological invasion may hasten invasional meltdown by accelerating historical introductions. Proc. Natl. Acad. Sci. U. S. A. 102:1088-1091. https://doi.org/10.1073/pnas.0308547102
  13. Hallegraeff, G. M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32:79-99. https://doi.org/10.2216/i0031-8884-32-2-79.1
  14. Hallegraeff, G. M. 1998. Transport of toxic dinoflagellates via ships' ballast water: bioeconomic risk assessment and efficacy of possible ballast water management strategies. Mar. Ecol. Prog. Ser. 168:297-309. https://doi.org/10.3354/meps168297
  15. Hallegraeff, G. M. & Bolch, C. J. 1992. Transport of diatom and dinoflagellate resting spores in ships' ballast water: implications for plankton biogeography and aquaculture. J. Plankton Res. 14:1067-1084. https://doi.org/10.1093/plankt/14.8.1067
  16. Head, M. J. 1996. Modern dinoflagellate cysts and their biological affinities. In Jansonius, J. & McGregor, D. C. (Eds.) Palynology: Principles and Applications, Vol. 3. American Association of Stratigraphic Palynologists Foundation, Salt Lake City, UT, pp. 1197-1248.
  17. International Maritime Organization. 1997. Ballast Water Guidelines A. 868 (20). Available from: http://globallast.imo.org/. Accessed Feb 11, 2011.
  18. Kelly, J. M. 1993. Ballast water and sediments as mechanisms for unwanted species introductions into Washington State. J. Shellfish Res. 12:405-410.
  19. Landsberg, J. H. 2002. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 10:113-390. https://doi.org/10.1080/20026491051695
  20. Lewis, J. 1991. Cyst-theca relationships in Scrippsiella (Dinophyceae) and related orthoperidinoid genera. Bot. Mar. 34:91-106. https://doi.org/10.1515/botm.1991.34.2.91
  21. Marret, F. & Zonneveld, K. A. F. 2003. Atlas of modern organic-walled dinoflagellate cyst distribution. Rev. Palaeobot. Palynol. 125:1-200. https://doi.org/10.1016/S0034-6667(02)00229-4
  22. Matsuoka, K. & Fukuyo, Y. 2000. Technical guide for modern dinoflagellate cyst study. Japan Society of the Promotion of Science, WESTPAC-HAB/WESTPAC/IOC, Tokyo, 29 pp.
  23. Matsuoka, K. & Fukuyo, Y. 2003. Taxonomy of cysts. In Hallegraeff, G. M., Anderson, D. M. & Cembella, A. D. (Eds.) Manual on Harmful Marine Microalgae. UNESCO, Paris, pp. 563-592.
  24. McCarthy, H. P. & Crowder, L. B. 2000. An overlooked scale of global transport: phytoplankton species richness in ships' ballast water. Biol. Invasions 2:321-322. https://doi.org/10.1023/A:1011418432256
  25. Mills, E. L., Leach, J. H., Carlton, J. T. & Secor, C. L. 1993. Exotic species in the Great Lakes: a history of biotic crises and anthropogenic introductions. J. Great Lakes Res. 19:1-54. https://doi.org/10.1016/S0380-1330(93)71197-1
  26. Montresor, M., Janofske, D. & Wallems, H. 1997. The cyst-theca relationship in Calciodinellum operosum emend (Peridiniales, Dinophyceae) and a new approach for the study of calcareous cysts. J. Phycol. 33:122-131. https://doi.org/10.1111/j.0022-3646.1997.00122.x
  27. Montresor, M., Sgrosso, S., Procaccini, G. & Kooistra, W. H. C. F. 2003. Intraspecific diversity in Scrippsiella trochoidea (Dinophyceae): evidence for cryptic species. Phycologia 42:56-70. https://doi.org/10.2216/i0031-8884-42-1-56.1
  28. Nezan, E. & Chomerat, N. 2011. Vulcanodinium rugosum gen. et sp. nov. (Dinophyceae), un nouveau dinoflagelle marin de la cote Mediterraneenne Francaise. Cryptogam. Algol. 32:3-18. https://doi.org/10.7872/crya.v32.iss1.2011.003
  29. R Development Core Team. 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from: http://www.R-project.org. Accessed Feb 11, 2011.
  30. Rhodes, L., Smith, K., Selwood, A., McNabb, P., van Ginkel, R., Holland, P. & Munday, R. 2010. Production of pinnatoxins by a peridinoid dinoflagellate isolated from Northland, New Zealand. Harmful Algae 9:384-389. https://doi.org/10.1016/j.hal.2010.01.008
  31. Rigby, G. R. & Hallegraeff, G. M. 1993. Shipping ballast water trials on the bulk carrier M/V Iron Whyalla. AQIS Ballast Water Research Series, Report No. 2. Australian Government Publishing Service, Canberra, 123 pp.
  32. Ruiz, G. M., Carlton, J. T., Grosholz, E. D. & Hines, A. H. 1997. Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am. Zool. 37:621-632.
  33. Schiller, J. 1937. Dinoflagellate (Peridineae) in monographischer Behandlung. 2. Teil, Lieferung 4. In Rabenhorst, L. (Ed.) Kryptogamen-Flora von Deutschland, Osterreich und der Schweiz. Akademische Verlagsgesllschaft, Leipzig, pp. 1-589.
  34. Steidinger, K., Landsberg, J. & Tomas, C. 2000. A report of the toxic microalgae in Florida waters. In Hallegraeff, G. M., Blackburn, S. I., Bolch, C. J. & Lewis, R. J. (Eds.) Proc. 9th Int. Conf. Harmful Algal Blooms, Paris, pp. 225.
  35. Steidinger, K. & Williams, J. 1970. Dinoflagellates: memoirs of the Hourglass cruises. Florida Department of Natural Resources Marine Research Laboratory, St. Petersburg, FL, 251 pp.
  36. Strayer, D. L. 2006. Alien species in the Hudson River. In Levinton, J. S. & Waldman, J. R. (Eds.) The Hudson River Estuary. Cambridge University Press, New York, NY, pp. 296-310.
  37. Subba Rao, D. V., Sprules, W. G., Locke, A. & Carlton, J. T. 1994. Exotic phytoplankton from ships' ballast waters: risk of potential spread to mariculture sites on Canada's east coast. Can. Data Rep. Fish. Aquat. 937:1-51.
  38. Tomas, C. R. 1997. Identifying marine phytoplankton. Academic Press, San Diego, CA, 858 pp.
  39. Truby, E. W. 1997. Preparation of single-celled marine dinoflagellates for electron microscopy. Microsc. Res. Tech. 36:337-340. https://doi.org/10.1002/(SICI)1097-0029(19970215)36:4<337::AID-JEMT11>3.0.CO;2-Q
  40. United States Environmental Protection Agency Gulf of Mexico Program. 2004. Gulf of Mexico ballast water profile. Available from: http://www.epa.gov/gmpo/species/ballast.html. Accessed Feb 11, 2011.
  41. Yoo, J. -K., Song, T. -Y., Hong, H. -P., Jeong, K. -M. & Myung, C. -S. 2006. Marine plankton in ballast water of ship entering Korea. Ocean Polar Res. 28:57-65. https://doi.org/10.4217/OPR.2006.28.1.057
  42. Zhang, F. & Dickman, M. 1999. Mid-ocean exchange of container vessel ballast water. 1. Seasonal factors affecting the transport of harmful diatoms and dinoflagellates. Mar. Ecol. Prog. Ser. 176:243-251.
  43. Zingone, A., Siano, R., D'Alelio, D. & Sarno, D. 2006. Potentially toxic and harmful microalgae from coastal waters of the Campania region (Tyrrhenian Sea, Mediterranean Sea). Harmful Algae 5:321-337. https://doi.org/10.1016/j.hal.2005.09.002
  44. Zonneveld, K. A. F., Versteegh, G. J. M. & de Lange, G. J. 2001. Palaeoproductivity and post-depositional aerobic organic matter decay reflected by dinoflagellate cyst assemblages of the Eastern Mediterranean S1 sapropel. Mar. Geol. 172:181-195. https://doi.org/10.1016/S0025-3227(00)00134-1

Cited by

  1. Identification of the harmful dinoflagellate Vulcanodinium rugosum recovered from a ballast tank of a globally traveled ship in Port Tampa Bay, Florida, USA vol.39, 2014, https://doi.org/10.1016/j.hal.2014.07.014
  2. Assessing the viability of microorganisms in the ballast water of vessels transiting the North Atlantic Ocean vol.101, pp.1, 2015, https://doi.org/10.1016/j.marpolbul.2015.09.055
  3. Analysis of heavy metal content of Cd and Zn in ballast water tank of commercial vessels in Port of Tanjung Emas Semarang, Central Java Province vol.55, 2017, https://doi.org/10.1088/1755-1315/55/1/012024
  4. The first report ofVulcanodinium rugosum(Dinophyceae) from the South China Sea with a focus on the life cycle vol.46, pp.4, 2012, https://doi.org/10.1080/00288330.2012.719911
  5. Plankton And Heavy Metal Correlation From Commercial Vessels In Port Of Tanjung Emas Semarang vol.31, pp.2267-1242, 2018, https://doi.org/10.1051/e3sconf/20183106004
  6. Metagenomic Sequencing Identifies Highly Diverse Assemblages of Dinoflagellate Cysts in Sediments from Ships’ Ballast Tanks vol.7, pp.8, 2011, https://doi.org/10.3390/microorganisms7080250
  7. Morphological and phylogenetic data do not support the split of Alexandrium into four genera vol.98, pp.None, 2011, https://doi.org/10.1016/j.hal.2020.101902