DOI QR코드

DOI QR Code

An Energy Awareness Congestion Control Scheme based on Genetic Algorithms in Wireless Sensor Networks

무선 센서 네트워크에서의 유전자 알고리즘 기반의 에너지 인식 트래픽 분산 기법

  • Received : 2011.04.26
  • Accepted : 2011.05.24
  • Published : 2011.07.28

Abstract

For energy-efficiency in Wireless Sensor Networks (WSNs), when a sensor node detects events, the sensing period for collecting the detailed information is likely to be short. The lifetime of WSNs decreases because communication modules are used excessively on a specific sensor node. To solve this problem, the TARP decentralized network packets to neighbor nodes. It considered the average data transmission rate as well as the data distribution. However, since the existing scheme did not consider the energy consumption of a node in WSNs, its network lifetime is reduced. The proposed scheme considers the remaining amount of energy and the transmission rate on a single node in fitness evaluation. Since the proposed scheme performs an efficient congestion control it extends the network lifetime. The simulation result shows that our scheme enhances the data fairness and improves the network lifetime by about 27% on average over the existing scheme.

최근 한정된 에너지를 기반으로 동작하는 센서 네트워크 환경에서 에너지를 효율적으로 사용하기 위한 많은 연구가 이루어지고 있다. 대표적인 연구로써 이벤트 발생 여부에 따른 노드의 가변 센싱 및 전송 기법의 경우, 특정 노드에서 네트워크 혼잡을 야기하여 전송 패킷의 손실 및 전송 모듈의 과다 사용으로 인한 네트워크의 수명이 감소하게 된다. 이를 해결하기 위해, 유전자 알고리즘을 기반으로 네트워크 패킷을 주변 노드로 분산시키는 TARP가 제안되었다. 하지만 TARP의 경우, 유전자 알고리즘의 핵심 단계인 적합도평가에서 사용되는 적합도 함수에 인접 노드의 평균 데이터 전송량 및 데이터 분산만을 고려하여 트래픽을 분산하기 때문에, 전체 네트워크 수명에 대한 추가적인 고려가 필요하다. 제안하는 기법은 적합도 평가에서 잔여 에너지량 및 단일 노드의 데이터 전송량을 추가적으로 고려함으로써, 보다 효율적인 트래픽 분산을 수행하여 네트워크 수명을 증가시킨다. 제안하는 기법은 기존 기법에 비해 평균 27% 이상의 네트워크 수명의 향상을 보였다.

Keywords

References

  1. D. Culler, D. Estrin, and M. Srivastava, "Guest Editors' Introduction: Overview of Sensor Networks," IEEE Computer, Vol.37, issue 8, pp.41-49, 2004. https://doi.org/10.1109/MC.2004.93
  2. Y. Oh, P. Kim, K. Jeong, and D. Choi, "Implementation of LMPR on TinyOS for Wireless Sensor Network," Journal of the Korea Contents Association, Vol.6, issue.12, pp.136-146, 2006.
  3. S. Choi, J. Kim, K. Chung, S. Han, J. Choi, K. Rim, J. Lee, "Dynamic Single Path Routing Mechanism for Reliability and Energy-Efficiency in a Multi Hop Sensor Network," Journal of the Korea Contents Association, Vol.9, issue.9, pp.31-40, 2009. https://doi.org/10.5392/JKCA.2009.9.9.031
  4. A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao, "Habitat Monitoring: Application Driver for Wireless Communications Technology," Proc. of ACM Workshop on Data Communications in Latin America and the Caribbean, pp.20-41, 2001.
  5. C. Wang, B. Li, K, Sohraby, M. Daneshmand, and Y. Hu, "Upstream Congestion Control in Wireless Sensor Networks through Cross-Layer Optimization," IEEE Journal on Selected Areas in Communications, Vol.25, pp.786-795, 2007. https://doi.org/10.1109/JSAC.2007.070514
  6. C. Park and I. Jung, "Traffic-Aware Routing Protocol for Wireless Sensor Networks," Proc. of International Conference on Information Science and Applications, pp.1-8, 2010. https://doi.org/10.1109/ICISA.2010.5480571
  7. C. Wan, S. Eisenman, and A. Campbell, "CODA : COngestion Detection and Avoidance in sensor networks," Proceedings of the 1st ACM Conference on Embedded Networked Sensor Systems, pp.266-279, 2003. https://doi.org/10.1145/958491.958523
  8. Y. Sankarasubramaniam, O. B. Akan, and I. F. Akyildiz, "ESRT: Event-to-Sink Reliable Transport for Wireless Sensor Networks," Proceedings of the 4th ACM International Symposium on Mobile Ad hoc Networking and Computing, pp.177-188, 2003. https://doi.org/10.1109/TNET.2005.857076
  9. A. Woo, T. Tong, and D. Culler, "Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks," Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, pp.14-27, 2003. https://doi.org/10.1145/958491.958494
  10. W. Heinzelman, "Application-Specific Protocol Architectures for Wireless Networks," PhD dissertation, Massachusetts Institute of Technology, 2000.
  11. X. Tang and J. Xu, "Extending Network Lifetime for Precision-Constrained Data Aggregation in Wireless Sensor Networks," Proceedings of IEEE INFOCOM, 2006. https://doi.org/10.1109/INFOCOM.2006.149
  12. J. Kamimura, N. Wakamiya, and M. Murata, "Distributed Clustering Method for Energy-Efficient Data Gathering in Sensor Networks," Proceedings of the 1st IEEE Communications Society Conference, Vol.1, No.2, pp.113-120, 2004. https://doi.org/10.1504/IJWMC.2006.012470

Cited by

  1. A High Efficiency Data Compression Scheme Based on Deletion of Bit-plain in Wireless Multimedia Sensor Networks vol.13, pp.10, 2013, https://doi.org/10.5392/JKCA.2013.13.10.037