DOI QR코드

DOI QR Code

Antioxidative Activity and Chemical Characteristics of Leaves, Roots, Stems and Fruits Extracts from Acanthopanax senticosus

가시오가피 잎·뿌리·추출물의 이화학적 특성 및 항산화 효과

  • Heo, Su-Jin (Department of Medical Biosciences, Graduate School, Dong-A University) ;
  • Ahn, Hee-Young (Department of Medical Biosciences, Graduate School, Dong-A University) ;
  • Kang, Min-Jeong (Department of Medical Biosciences, Graduate School, Dong-A University) ;
  • Lee, Jae-Hong (Department of Medical Biosciences, Graduate School, Dong-A University) ;
  • Cha, Jae-Young (Technical Research Institute, Daesun Distilling Co., Ltd.) ;
  • Cho, Young-Su (Department of Biotechnology, Dong-A University)
  • 허수진 (동아대학교 대학원 의생명과학과) ;
  • 안희영 (동아대학교 대학원 의생명과학과) ;
  • 강민정 (동아대학교 대학원 의생명과학과) ;
  • 이재홍 (동아대학교 대학원 의생명과학과) ;
  • 차재영 (대선주조(주) 기술연구소) ;
  • 조영수 (동아대학교 생명공학과)
  • Received : 2011.06.14
  • Accepted : 2011.07.21
  • Published : 2011.07.30

Abstract

The contents of bioactive and antioxidative activities (DPPH (${\alpha},{\alpha}'$-diphenyl-${\beta}$-picrylhydrazyl), free radical scavenging activity, peroxidation of linoleic acid and rat hepatocyte microsome, and Fe/Cu reducing power, tyrosinase inhibition activity) were tested by in vitro experimental models using water, hot water, ethanol and methanol extracts of leaves (ASL), roots (ASR), stems (ASS) and fruits (ASF) from Acanthopanax senticosus. Hot water extract from ASL showed the highest extraction yield (16.04%) as well as highest contents of phenolic compounds (2.67%) and flavonoids (1.43%). Major minerals were K, Ca and Mg. In oxidation in vitro models using DPPH free radical scavenging activity, Fe/Cu reducing power, $Fe^{2+}$/ascorbate-induced linoleic acid peroxidation by ferric thiocyanate and thiobarbituric acid (TBA) methods, tyrosinase inhibition activity and autooxidation of rat hepatic microsomes membrane, and antioxidative activities were strong in Acanthopanax senticosus. From these results, ASL extracts were shown to have the most potent antioxidative properties and contain the highest amounts of antioxidative compounds such as phenolic compounds and flavonoids. These results may provide the basic data to understand the biological activities of bio-active materials derived from leaves of Acanthopanax senticosus.

가시오가피 잎, 뿌리, 줄기 및 열매의 수용성, 에탄올 및 메탄올 추출물의 생리활성 물질 분석과 항산화 활성(DPPH free radical scavenging 활성, Cu/Fe-환원력, 간 조직 microsome 생체막 및 linoleic acid 과산화지질, Tyrosinase 저해활성)을 측정 하였다. 가시오가피 잎의 열수 추출물에서 추출 수율 16.04%, 폴리페놀 화합물 함량2.67% 및 플라보노이드 함량 1.43%로 가장 높았다. 가시오가피 잎, 뿌리, 줄기 및 열매의 주요 미네랄은 K, Ca 및 Mg 이었다. DPPH free radical scavenging 활성, Cu/Fe-환원력, 간 조직 microsome 생체막 및 linoleic acid의 과산화 지질 측정에 의한 항산화 활성은 가시오가피 잎, 뿌리, 줄기 및 열매 모두에서 나타났으며, 시료 처리 농도 의존적으로 활성이 증가되는 것으로 나타났다. 이상의 실험 결과에서 가시오가피 잎, 뿌리, 줄기 및 열매 모두에서 높은 항산화 활성이 있었으며, 이는 폴리페놀 화합물과 플라보노이드와 같은 생리활성 성분을 많이 함유하고 있는 것과 깊은 관련성이 있는 것으로 향후 건강기능식품이나 기능성화장품의 천연 항산화제 소재 개발 관련 연구의 기초자료로 활용될 수 있을 것으로 사료되어 진다.

Keywords

References

  1. A.O.A.C. 1975. Official methods of analysis. 12th eds., Association of official analytical chemists. Washington, D.C., U.S.A.
  2. Afanaseva, T. N. and N. P. Lebkova. 1987. Effect of Eleutherococcus on the subcelluolar structures of the heart in experimental myocardianl infarct. Biull. Eksp. Biol. Med. 103, 212-215.
  3. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26, 1199-1204.
  4. Brekhman, I. I. 1975. Ancient ginseng and pharmacology of the future. Symposium of Gerontololy, April 9-12, Lugano. 1-12.
  5. Cha, J. Y. and Y. S. Cho. 1999. Effect of potato polyphenolics on lipid peroxidation in rats. J. Korean Soc. Food Sci. Nutr. 28, 1131-1136.
  6. Cha, J. Y., H. J. Kim, C. H. Chung, and Y. S. Cho. 1999. Antioxidative activities and contents of polyphenolic compound of Cudrania tricuspidata. J. Korean Soc. Food Sci. Nutr. 28, 1310-1315.
  7. Cha, J. Y., H. Y. Ahn, K. E. Eom, B. K. Park, B. S. Jun, and Y. S. Cho. 2009. Antioxidative activity of Aralia elata shoot and leaf extracts. J. Life Sci. 19, 652-658. https://doi.org/10.5352/JLS.2009.19.5.652
  8. Cha, J. Y., Y. S. Cho, I. Kim, T. Anno, S. M. Rahman, and T. Yanagita. 2001. Effect of hesperetin, a citrus flavonoid, on the liver triacylglycerol content and phosphatidate phosphohydrolase activity in orotic acid-fed rats. Plant Foods Human Nutr. 56, 349-358. https://doi.org/10.1023/A:1011884200848
  9. Dardymov, I. V., G. N. Bezdetko, and I. I. Brekhman. 1972. Incorporation of phosphorus-32 into rat liver RNA during physical exercise and under the effect of glycosides from Eleutherococcus senticosus. Vop. Med. Khim. 18, 267-269.
  10. Duncan, D. B. 1959. Multiple range and multiple F test. Biometrics 1, 1-42. https://doi.org/10.1002/bimj.19590010102
  11. Ferrando, A, L. Vila, J. A. Voces, A. C. Cabrol, A. I. Alvarez, and J. G. Prieto. 1999. Effects of ginseng extract on various haematological parameters during aerobic exercise in the rat. Planta Med. 65, 288-290. https://doi.org/10.1055/s-2006-960783
  12. Glatthaar-Saamuller, B., F. Sacher, and A. Esperester. 2001. Antiviral activity of an extract derived from root Eleutherococcus senticos. Antiviral Res. 50, 223-228 https://doi.org/10.1016/S0166-3542(01)00143-7
  13. Jayaprakasha, G. K., R. P. Singh, and K. K. Sakariah. 2001. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 73, 285-290. https://doi.org/10.1016/S0308-8146(00)00298-3
  14. Jia, Z., M. Tang, and J. Wu. 1999. The determination of flavonoid contents in mulberry and thier scavenging effects on superoxide radicals. Food Chem. 64, 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  15. Johnson, J. E., R. Walford, D. Harma, and J. Miquel. 1986. In 'Free radicals, aging and degenerative disease', Alen R. Liss, N.Y.
  16. Kim, C. W. and H. Y. Lee. 1990. Studies on the constituents of seeds of Acanthopanax senticosus for inermis Harms. Korean J. Pharmacogn. 21, 235-238.
  17. Kim, E. Y., I. H. Baik, J. H. Kim, S. R. Kim, and M. R. Rhyu. 2004. Screening of the antioxidant activity of some medicinal plants. Korean J. Food Sci. Technol. 36, 333-338.
  18. Kim, S. J., M. Y. Heo, K. H. Bae, S. S. Kang, and H. P. Kim. 2003. Tyrosinase inhibitory activity of plant extract (III): Fifty Korean indigenous plants. J. Applied Phamacol. 11, 245-248.
  19. Ko, S. K., J. S. Kim, Y. E. Choi, S. J. Lee, K. S. Park, and S. H. Chung. 2002. Anti-diabetic effects of mixed water extraction from Gingseng Radix rubra acanthopanacis cortex and cordyceps. Korean J. Pharmacogen. 33, 337-342.
  20. Lee, J. J., A. R. Kim, Y. N. Seo, and M. Y. Lee. 2009. Comparison of physicochemical composition of three species of genus Angelica. Korean J. Food Preserv. 16, 94-100.
  21. Masamoto, Y., H. Ando, Y. Murata, Y. Shimoishi, M. Tada, and K. Takahata. 2003. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L. Biosci. Biotechnol. Biochem. 67, 631-634. https://doi.org/10.1271/bbb.67.631
  22. Oh, S. L., S. S. Kim, B. Y. Min, and D. H. Chung. 1990. Composition of free sugars, free amino acids, non-volatile organic acids and tannins in the extracts of L. chinensis M., A. acutiloba K., S. chinesis B. and A. sessiliflorum S. Korean J. Food Sci. Technol. 22, 76-81.
  23. Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  24. Plaa, G. L. and H. Witschi. 1976. Chemicals, drugs and lipid peroxidation. Annu. Rev. Pharmacol. Toxicol. 16, 125-131. https://doi.org/10.1146/annurev.pa.16.040176.001013
  25. Saito, M. 1988. Interaction between lipid peroxide formation and nutritional status. J. Jpn. Soc. Nutr. Food Sci. 41, 343-349. https://doi.org/10.4327/jsnfs.41.343
  26. Swain, T., W. E. Hillis, and M. Oritega. 1959. Phenolic constituents of Ptunus domestica. I. Quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10, 83-88.
  27. Szolomicki, J., L. Samochowies, M. W. J. Drozdzik, and S. Szolomicki. 2000. The influence of active components of Eleutherococcus senticosus on cellular defense and physical fitness in man. Phytother. Res. 14, 30-35. https://doi.org/10.1002/(SICI)1099-1573(200002)14:1<30::AID-PTR543>3.0.CO;2-V
  28. Vile, G. F. and R. M. Tyrrell. 1995. UVA radiation-induced oxidative damage to lipid and protein in vitro and in human skin fibroblast is dependent on iron and singlet oxygen. Free Radical Biol. Med. 18, 721-730. https://doi.org/10.1016/0891-5849(94)00192-M
  29. Wong, S. F., B. Holliwell, R. Richimond, and W. R. Skowroneck. 1981. The role of superoxide and hydroxyl radical in the degradation of hyaluronic acid induced by metal ions and by ascorbic acid. J. Inorganic. Biochem. 14, 127-134 https://doi.org/10.1016/S0162-0134(00)80033-1
  30. Yang, H. J., E. M. Kim, and K. S. Jang. 2008. Identification of the polyacetylenes extracted from Acanthopanax Senticosus by petroleum ether. J. Agri. Sci. 35, 11-17
  31. Zhu, Q. V., R. M. Hackman, X. X. Jodilensunsa, R. R. Holt, and C. L.Keen. 2002. Antioxidative activities of Oolong tea. J. Agric. Food Chem. 50, 6229-6234.

Cited by

  1. Authentication of Traded Traditional Medicine Ogapi Based on Nuclear Ribosomal DNA Internal Transcribed Spacers and Chloroplast DNA Sequences vol.23, pp.6, 2015, https://doi.org/10.7783/KJMCS.2015.23.6.489
  2. Antioxidant Activities and α-Glucosidase Inhibitory Effect of Water Extracts from Medicinal Plants vol.21, pp.3, 2013, https://doi.org/10.7783/KJMCS.2013.21.3.197
  3. Phytoconstituents and Nutritional Properties of the Fruits ofEleutherococcus divaricatusandEleutherococcus sessiliflorus: A Study of Non-European Species Cultivated in Poland vol.2017, 2017, https://doi.org/10.1155/2017/8374295
  4. Antioxidant Effects and Nitrite Scavenging Ability of Extract from Acanthopanax cortex Shoot vol.25, pp.4, 2012, https://doi.org/10.9799/ksfan.2012.25.4.793
  5. Comparative Radical Scavenging and Nitric Oxide Production Capacity of Water Extracts of Acanthopanax divaricatus var, Albeofructus and Eleutherococcus divaricatus var. Chiisanensis vol.57, pp.4, 2014, https://doi.org/10.3839/jabc.2014.053
  6. LC-ESI-MS/MS profiling of phenolics from Eleutherococcus spp. inflorescences, structure-activity relationship as antioxidants, inhibitors of hyaluronidase and acetylcholinesterase vol.25, pp.5, 2017, https://doi.org/10.1016/j.jsps.2016.11.002
  7. Biological Activity and Chemical Characteristics of Fermented Acanthopanax senticosus by Mold vol.22, pp.12, 2012, https://doi.org/10.5352/JLS.2012.22.12.1704
  8. Eleutherosides Extraction from Acanthopanax sessiliflorus Seeman and Eleutherococcus senticosus Maxim Using an Enzymatic Process vol.45, pp.9, 2016, https://doi.org/10.3746/jkfn.2016.45.9.1273
  9. Antioxidant and Nitrite Scavenging Activities of Acanthopanax senticosus Extract Fermented with Different Mushroom Mycelia vol.46, pp.2, 2014, https://doi.org/10.9721/KJFST.2014.46.2.205
  10. Phytochemical Content and Pharma-Nutrition Study on Eleutherococcus senticosus Fruits Intractum vol.2016, 2016, https://doi.org/10.1155/2016/9270691
  11. Effect of Acanthopanax Senticosus Water Extract on Lipid Metabolism in Rats Fed a Hypercholesterol Diet vol.23, pp.4, 2012, https://doi.org/10.7856/kjcls.2012.23.4.501
  12. Preparation of Functional Healthy Drinks by Acanthopanax senticosus Extracts vol.24, pp.9, 2014, https://doi.org/10.5352/JLS.2014.24.9.959
  13. Antioxidant Activity of Methanol Extracts from Lactuca indica vol.19, pp.2, 2012, https://doi.org/10.11002/kjfp.2012.19.2.294
  14. The Antioxidant Activity and Their Major Antioxidant Compounds from Acanthopanax senticosus and A. koreanum vol.20, pp.7, 2015, https://doi.org/10.3390/molecules200713281
  15. Optimization of Microwave Extraction Conditions for Antioxidant Phenolic Compounds from Ligustrum lucidum Aiton Using Response Surface Methodology vol.43, pp.4, 2014, https://doi.org/10.3746/jkfn.2014.43.4.570
  16. Variation in phytochemicals and bioactivity of the fruits ofEleutherococcusspecies cultivated in Poland vol.29, pp.23, 2015, https://doi.org/10.1080/14786419.2014.1002091
  17. THUNB.) treated with medicinal plant extracts and food additives pp.20487177, 2018, https://doi.org/10.1002/fsn3.673