DOI QR코드

DOI QR Code

Effects of High-Intensive Exercise Duration on Hematologic Properties and Cytokines in Rats

고강도운동 지속시간이 rat의 혈액학적 조성과 사이토카인에 미치는 영향

  • Hyun, Kyung-Yae (Department of Clinical Laboratory Science, College of Natural Sciences, Dong-Eui University)
  • Received : 2011.05.05
  • Accepted : 2011.05.26
  • Published : 2011.07.30

Abstract

The effects of duration and time-dependent, high-intensity exercise on hematological properties and inflammation-related parameters in rats were studied. 20, 60, and 120 min of high-intensive exercise were performed daily for 8 weeks. None of the complete blood count (CBC) factors were affected by the exercise, except for the leukocyte concentration which, in the 20 min group, showed an increase of 47% compared to the control, but this was decreased after 60 min by 30% compared to the control. As exercise was performed for 60 min or longer, serum concentrations of $Fe^{++}$, unsaturated iron biding capacity (UIBC), and total iron biding capacity (TIBC) were significantly elevated in comparison to the control, where 20 min of exercise did not show any change. Both levels of interleukin-6 (IL-6), a pro-inflammatory cytokine, and interleukin-10 (IL-10), an anti-inflammatory cytokine in the serum, were elevated in response to the high-intensity exercise, however the rate of IL-6 increase was higher than the rate of exercise intensity increase, thus the offset of inflammation might be suggested. The concentration of nitric oxide (NO) in the serum became high in response to the exercise. Overall, the current observation suggests that inflammation-like responses to high-intensity exercise might be due to high circulation of blood flow and high oxygen requirement, resulting in systemic damages. However, under the current high-intensity exercise conditions, more than 20 min of exercise might not be suggested for health care purposes.

고강도운동 시간이 레트의 혈액학적 조성과 염증관련 인자의 변화에 미치는 영향을 연구하였다. 고강도운동을 매일 20, 60, 그리고 120분 동안 8주간 실시하였다. 거의 모든 혈액세포수의 측정에 있어서 고강도운동이 미치는 영향은 거의 찾아볼 수 없었으나 백혈구의 경우 대조군보다 47% 더 증가한 것으로 나타났고 60분 이후로는 대조군의 70% 수준까지 감소하였다. 60분 혹은 그 이상의 시간 동안 운동을 했을 경우 혈청 내 $Fe^{++}$, UIBC, 그리고 TIBC수준이 대조군에 비해 유의성 있게 증가한 반면 20분간의 운동에서는 이들의 변화를 볼 수 없었다. 염증촉진성 사이토카인인 IL-6와 항염증성 사이토카인인 IL-10 모두의 혈청 내 수준이 고강도운동에 의해 증가하였으나 운동시간 대비 IL-6의 증가폭이 훨씬 높은 것으로 보아 염증반응의 내재 가능성을 보여주었다. 혈청 내의 인터페론-감마는 20분과 60분의 고강도운동에서 증가하였으나 120분에서는 그 수준이 대조군보다 낮아졌다. 혈청내의 nitric oxide 농도는 고강도운동에 의해 높아졌다. 전반적으로, 본 연구에서 보여진 장시간의 고강도운동에 의한 유사염증 반응은 혈류의 상승과 산소요구량이 높아진 결과로 사료되며 본 연구의 조건하에서는 고강도의 운동은 단시간운동이 건강관리에는 도움이 되는 것으로 사료된다.

Keywords

References

  1. Aisen, P., M. Wessling-Resnick, and E. A. Leibold. 1999. Iron metabolism. Curr. Opin. Chem. Biol. 3, 200-206. https://doi.org/10.1016/S1367-5931(99)80033-7
  2. Baj, Z., J. Kanttorski, K. Lewicki, L. Pokoca, E. Fornalczyk, H. Tchorzewski, Z. Sulowska, and R. Lewicki. 1994. Immunological status of competitive cyclists before and after the training season. Int. J. Sports Med. 15, 319-324. https://doi.org/10.1055/s-2007-1021067
  3. Barengo, N. C., G. Hu, T. A. Lakka, H. Pekkarinen, A. Nissinen, and J. Tuomilehto. 2004. Low physical activity as a predictor for total and cardiovascular disease mortality in middle aged men and women in Finland. Eur. Heart J. 25, 2204-2211. https://doi.org/10.1016/j.ehj.2004.10.009
  4. Baum, M., M. Muller-Steinhardt, H. Liesen, and H. Kirchner. 1997. Moderate and exhaustive endurance exercise influences the interferon-gamma levels in whole-blood culture supernatants. Eur. J. Appl. Physiol. Occup. 76, 165-169. https://doi.org/10.1007/s004210050229
  5. Bolger, A. P., R. Sharma, S. von Haehling, W. Doehner, B. Oliver, M. Rauchhaus, A. J. Coats, I. M. Adcock, and S. D. Anker. 2002. Effect of interleukin-10 on the production of tumor necrosis factor-alpha by peripheral blood mononuclear cells from patients with chronic heart failure. Am. J. Cardiol. 90, 384-389. https://doi.org/10.1016/S0002-9149(02)02494-3
  6. Brown, D. A., K. N. Jew, G. C. Sparagna, T. I. Musch, and R. L. Moore. 2008. Exercise training preserves coronary flow and reduces infarct size after ischemia-reperfusion in rat heart. J. Appl. Physiol. 95, 2510-2518.
  7. Dokka, S., X. Shi, S. Leonard, L. Wang, V. Castranova, and Y. Rojanasakui. 2001. Interelukin-10-mediated inhibition of free radical generation in macrophage. Am. J. Physiol. 280, L1196-1202.
  8. Dunn, A. L., M. H. Trivedi, and H. A. Oneal. 2001. Physical activity dose-response effects on outcomes of depression and anxiety. Med. Sci. Sports Exerc. 33, 587-597. https://doi.org/10.1097/00005768-200106001-00027
  9. Feost, L. and P. Vestergaard. 2004. Alcohol and risk of atrial fibrillation or flutter. Arch. Intern. Med. 164, 1993-1998. https://doi.org/10.1001/archinte.164.18.1993
  10. Green, D. J., A. Maiorana, G. O'Driscoll, and R. Taylor. 2004. Effect of exercise training on endothelium-derived nitric oxide function in humans. J. Physiol. 561, 1-25. https://doi.org/10.1113/jphysiol.2004.068197
  11. Haahr, P. M., B. K. Pedersen, A. Fomsgaard, N. Tvede, M. Diamant, K. Klarlund, J. Halkjaer-kristensen, and K. Bendtzen. 1991. Effect of physical exercise on in vitro production of interleukin 1, interleukin 6, tumour necrosis factor- alpha, interleukin 2 and interferon-gamma. Int. J. Sports. Med. 12, 223-227. https://doi.org/10.1055/s-2007-1024672
  12. Hamer, M. 2007. The relative influences of fitness and fatness of inflammatory factors. Prev. Med. 44, 3-11. https://doi.org/10.1016/j.ypmed.2006.09.005
  13. Hu, C. T., H. R. Chang, Y. H. Hsu, C. J. Liu, and H. I. Chen. 2005. Ventricular hypertrophy and arterial hemodynamics following deprivation of nitric oxide in rats. Life Sci. 78, 164-173. https://doi.org/10.1016/j.lfs.2005.04.061
  14. Jehn, M., E. Huallar, and J. M. Clark. 2004. Serum ferritin and risk of the metabolic syndrome in U.S. adults. Diabetes Care 27, 2422-2428. https://doi.org/10.2337/diacare.27.10.2422
  15. Kappel, M,, N. Tvede, H. Galbo, P. M. Haahr, M. Kjaer, M. Linstow, K. Klarlund, and B. K. Pedersen. 1991. Evidence that the effect of physical exercise on NK cell activity is mediated by epinephreine. J. Appl. Physiol. 70, 2530-2534.
  16. Klausen, T., J. P. Richalet, N. V. Olsen, J. P. Richalet, and B. K. Pedersen. 1997. Hypoxemia increase serum interleukin- 6 in humans. J. Cell. Physiol. 76, 480-482.
  17. Li, N., S. He, M. Blomback, and P. Hiemdahl. 2007. Platelet activity coagulation and fibrinolysis during exercise in health males; Effects of thrombin inhibition by argatroban and enoxaparin. Arterioscle. Thromb. Vasc. Biol. 27, 407-413.
  18. Madden, K. S., V. M. Sanders, and D. L. Felten. 1995. Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu. Rev. Pharmacol. Toxicol. 35, 417-448. https://doi.org/10.1146/annurev.pa.35.040195.002221
  19. Maeyer, De. and De. Maeyer-Guignard. 1998. The cytokine Handbook. Academic. 491-516.
  20. Mazzeo, R. S., G. A. Brooks, and S. M. Horvath. 1984. Effects of age on metabolic response to endurance training in rats. J. Appl. Physiol. 57, 1369-1374.
  21. McCarthy, D. A. and M. M. Dale. 1988. The leucocytosis of exercise. A review and model. Sports Med. 6, 333-363. https://doi.org/10.2165/00007256-198806060-00002
  22. McCord, J. M. 1998. Iron free radicals, and oxidative injury. Semin. Hematol. 35, 5-12.
  23. Moncada, S. and A. Higgs. 1993. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 329, 2002-2012. https://doi.org/10.1056/NEJM199312303292706
  24. Mooren, F. C., A. Lechtermann, and K. Volker. 2004. Exercise-induced apoptosis of lymphocytes depends on training status. Med. Sci. Sports Exerc. 36, 1476-1483. https://doi.org/10.1249/01.MSS.0000139897.34521.E9
  25. Muller, J. M., P. R. Mayers, and M. H. Laughlin. 1994. Vasodilator responses of coronary resistance arteries of exercise- trained pigs. J. Appl. Physiol. 89, 2308-2314.
  26. Mulligan, M. S., M. L. Jones, A. A. Vaporciyan, M. C. Howard, and P. A. Ward. 1993. Protective effects of L-4and IL-10 against immune complex-induced lung injury. J. Immunol. 151, 5666-5674.
  27. Nagaraju, K., N. Raben, G. Merritt, L. Loeffler, K. Kirk, and P. Plotz. 1998. A variety of cytokines and immunologically relevant surface molecules are expressed by normal human skeletal muscle cells under proinflammatory stimuli. Clin. Exp. Immunol. 113, 407-414. https://doi.org/10.1046/j.1365-2249.1998.00664.x
  28. Peake, J. M., K. Suzuki, M. Hordern, G. Wilson, K. Nosaka, and J. S. Coombes. 2005. Plasma cytokine changes in relation to exercise intensity and muscle damage. Eur. J. Appl. Physiol. 95, 514-521. https://doi.org/10.1007/s00421-005-0035-2
  29. Perdersen, B. K., A. Steensberg, and P. Schjerling. 2001. Muscle-derived interleukin-6: possible biological effects. J. Physiol. 536, 329-337. https://doi.org/10.1111/j.1469-7793.2001.0329c.xd
  30. Schottelius, A. J., M. W. Mayo, R. B. Sartor, and A. J. Baldwin. 1999. Interleukin-10 signaling blocks inhibitor of kappa B kinase activity and nuclear factor kappa B DNA binding. J. Biol. Chem. 274, 3168-3174.
  31. Smith, J. K. 2001. Exercise and atherogenesis. Exerc. Sport. Sci. Rev. 29, 49-53. https://doi.org/10.1097/00003677-200104000-00002
  32. Sun, D., A. Huang, A. Koller, and G. Kaley. 1994. Short-term daily exercise activity enhances endothelial NO synthesis in skeletal muscle arterioles of rats. J. Appl. Physiol. 76, 2241-2247.
  33. Tvede, N., M. Kappel, J. Halkjaer-Kristensen, and B. K. Pedersen. 1993. The effect of light, moderate and severe bicycle exercise on lymphocyte subsets, natural and lymphokine activated killer cells, lymphocyte proliferative response and interleukin 2 production. Int. J. Sports Med. 14, 275-282. https://doi.org/10.1055/s-2007-1021177
  34. van Hallest, P. L., F. W. Asselbers, N. J. Veeger, A. M. Van Roon, N. J. Veeger, M. M. Henneman, A. J. Smit, J. W. Tervaert, J. F. May, and R. O. Gans. 2003. Correlates of endothelial function and their relationship with inflammation in patients with familial hypercholesterolaemia. Clin. Sci. Lond. 104, 627-632. https://doi.org/10.1042/CS20020293