DOI QR코드

DOI QR Code

The Roles of Phytohormones and AtEXPA3 Gene in Gravitropic Response of Arabidopsis thaliana

애기장대 굴중성 반응에 있어서 식물호르몬과 AtEXPA3 유전자의 역할

  • Yun, Hye-Sup (Department of Life Science, Chung-Ang University) ;
  • Lee, Yew (Department of Biological Science and Technology, Yonsei University) ;
  • Kim, Seong-Ki (Department of Life Science, Chung-Ang University)
  • 윤혜섭 (중앙대학교 생명과학과) ;
  • 이유 (연세대학교 생명과학기술학부) ;
  • 김성기 (중앙대학교 생명과학과)
  • Received : 2011.02.07
  • Accepted : 2011.06.24
  • Published : 2011.07.30

Abstract

We focused on relationship between phytohormones and AtEXPA3 gene in gravitropic response of A. thaliana. RT-PCR analysis shows that AtEXPA3 was highly expressed in actively developing tissues such as leaf, rosette, root and flower tissues. AtEXPA3 gene expression was enhanced by gravistimulation, BR and IAA. Furthermore, decreased gravitropism was observed when treatment of AVG, an ethylene biosynthetic inhibitor, suggesting that ethylene has a gravistimulating effect itself as well as BRs and IAA. Inhibition of gravitropism in AtEXPA3 RNAi mutant suggests that BR, auxin and ethylene are playing roles as regulators of AtEXPA3. In addition, altered gravitropism in BRs signaling mutant (decreased in bri1-301, bak1, and increased BRI-GFP) indicated that BRs signaling mediated the gravitropism. In conclusion, gravitropic responses of Arabidopsis root resulting from root growth were mediated by increased expression of AtEXPA3 gene, which is stimulated by phytohormones.

본 연구에서는 식물뿌리의 굴중성 반응에 있어서 식물호르몬과 AtEXPA3 유전자와의 관계를 밝히고자 하였다. AtEXPA3 유전자의 RT-PCR을 통한 발현분석 결과 잎, 근출엽, 뿌리 꽃 등 생장이 활발한 조직에서 발현률이 높게 나타났으며, 굴중성 자극과 BRs, IAA에 의해서도 발현이 증가되었다. 또한 ethylene 생합성 저해제인 AVG를 처리하면 굴중성 반응이 현저히 억제되었는데 이는 ethylene 그 자체도 BR과 IAA처럼 굴중성을 촉진시키는 활성을 갖고 있음을 의미한다. 한편 호르몬을 처리하지 않은 AtEXPA3 RNAi mutant에서 굴중성 반응이 억제되는 현상은 애기장대 뿌리의 생장에 관여하는 AtEXPA3의 조절 인자로 BRs, auxin, ethylene 등의 식물호르몬이 관여하고 있음을 나타낸다. 아울러 BRs signaling mutant에서 변화된 굴중성(bri1-301, bak1에서 감소, BRI-GFP에 서 증가) 반응의 감소와 증가는 굴중성 반응이 BRs의 신호전달 과정을 통하여 일어남을 의미한다. 결론적으로 애기장대 뿌리의 굴중성 반응은 식물호르몬에 의한 AtEXPA3 유전자의 발현 증가의 결과로 인해 애기장대 뿌리의 생장이 촉진되어 나타나는 결과라 하겠다.

Keywords

References

  1. Catala, C., J. K. C. Rose, and A. B. Bennett. 2000. Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiol. 122, 527-534. https://doi.org/10.1104/pp.122.2.527
  2. Cho, H. T. and H. Kende. 1997. Expression of expansin genes correlated with growth in deepwater rice. Plant Cell 9, 1661-1671. https://doi.org/10.1105/tpc.9.9.1661
  3. Cho, H. T. and D. J. Cosgrove. 2000. Altered expression of expansin modulates leaf growth and pedical abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97, 9783-9788. https://doi.org/10.1073/pnas.160276997
  4. Cho, H. T. and H. Kende. 1997. Expansins in deepwater rice internodes. Plant Physiol. 113, 1137-1143. https://doi.org/10.1104/pp.113.4.1137
  5. Civello, P. M., A. L. Powell, A. Sabehat, and A. B. Bennett. 1999. An Expansin gene expressed in ripening strawberry fruit. Plant Physiol. 121, 1273-1279. https://doi.org/10.1104/pp.121.4.1273
  6. Clough, S. J. and A. F. Bent. 1998. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
  7. Cosgrove, D. J. 1989. Characterization of long-term expression of isolated cell walls from growing cucumber hypocotyls. Planta 177, 121-130. https://doi.org/10.1007/BF00392162
  8. Cosgrove, D. J. 1993. Water uptake by growing cells; an assessment of the controlling roles of wall relaxation, solute uptake and hydraulic conductance. Int. J. Plant Sci. 154, 10-21. https://doi.org/10.1086/297087
  9. Cosgrove, D. J. 1997. Cellular mechanisms underlying growth asymmetry during stem gravitropism. Planta 203, 130-135. https://doi.org/10.1007/PL00008101
  10. Cosgrove, D. J. 2000. Loosening of plant cell walls by expansins. Nature 407, 321-326. https://doi.org/10.1038/35030000
  11. Cosgrove, D. J. 2000. New genes and new biological roles for expansins. Curr. Opin. Plant Biol. 3, 73-78. https://doi.org/10.1016/S1369-5266(99)00039-4
  12. Downes, B. P., C. R. Steinbaker, and D. N. Crowell. 1998. Expression and processing of a hormonally regulated beta- expansin from Soybean. Plant Physiol. 126, 244-252.
  13. Fleming, A. J., S. McQueen-Mason, T. Mandel, and C. Kuhlemeier. 1997. Induction of leaf primordia by the cell wall protein expansin. Science 27, 1414-1418.
  14. Fry, S. C. 1995. Polysaccharide modifying enzymes in the plant cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 497-520. https://doi.org/10.1146/annurev.pp.46.060195.002433
  15. Hruz, T., O. Laule, G. Szabo, F. Wessendorp, S. Bleuler, L. Oertle, P. Widmayer, W. Gruissem, and P. Zimmermann. 2008. Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinformatics 2008, Article ID 420747, 5.
  16. Huchison, K. W., P. B. Singer, C. Diaz-Sala, and M. S. Greenwood. 1999. Expansin are conserved in conifers and expression in response to exogenous auxin. Plant Physiol. 120, 827-832. https://doi.org/10.1104/pp.120.3.827
  17. Kim, S. K., S. C. Chang, E. J. Lee, W. S. Chung, Y. S. Kim, S. Hwang, and J. S Lee. 2000. Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol. 123, 997-1004. https://doi.org/10.1104/pp.123.3.997
  18. Kim, T. W. 2003. Mechanism of homeostatic regulation and action of plant steroidal hormones, brassinosteroids. Ph. D Thesis, Chung-Ang University, Seoul. Korea.
  19. Lee, Y., D. Choi, and H. Kende. 2001. Expansin: ever-expanding numbers and functions. Curr. Opin. Plant Biol. 4, 527-532. https://doi.org/10.1016/S1369-5266(00)00211-9
  20. McQueen-Mason, S. J., D. M. Durachko, and D. J. Cosgrove. 1992. Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4, 1425-1433. https://doi.org/10.1105/tpc.4.11.1425
  21. Meudt, W. T. 1987. Investigations on mechanism of brassinosteroid response. Plant Physiol. 83, 195-198. https://doi.org/10.1104/pp.83.1.195
  22. Nishitani, K. 1997. The role of endoxyloglucan transferase in the organization of plant cell walls. Int. Rev. Cytol. 173, 157-206. https://doi.org/10.1016/S0074-7696(08)62477-8
  23. Nishitani, K. 1998. Construction and re-structuring of the cellulose-xyloglucan framework in the apoplast as mediated by the xyloglucan-related protein family-a hypothetical scheme. J. Plant Res. 111, 1-8. https://doi.org/10.1007/BF02507144
  24. Park, W. J. 1998. Effect of epibrassinolide on hypocotyl growth of the tomato mutant diageotropica. Planta 207, 120-124. https://doi.org/10.1007/s004250050463
  25. Rose, J. K. C., H. H. Lee, and A. B. Bennett. 1997. Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc. Natl. Acad. Sci. USA 94, 5955-5960. https://doi.org/10.1073/pnas.94.11.5955
  26. Shcherban, T. Y., J. Shi, D. M. Durachko, M. J. Guiltinam, S. McQueen-Mason, M. Shieh, and D. J. Cosgrove. 1995. Molecular cloning and sequence analysis of expansins-a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc. Natl. Acad. Sci. USA 92, 9245-9249. https://doi.org/10.1073/pnas.92.20.9245
  27. Varner, J. E. and L. S. Lin. 1989. Plant cell wall architecture. Cell 56, 231-239. https://doi.org/10.1016/0092-8674(89)90896-9
  28. Wieczorek, K., B. Golecki, L. Gerdes, P. Heinen, D. Szakasits, D. M. Durachko, D. J. Cosgrove, D. P. Kreil, P. S. Puzio, H. Bohlmann, and F. M. W. Grundler. 2006. Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana. Plant J. 48, 98-112. https://doi.org/10.1111/j.1365-313X.2006.02856.x