DOI QR코드

DOI QR Code

Study on the Electrical Properties of Amorphous HfInZnO TFTs Depending on Sputtering Power

비정질 하프늄인듐징크옥사이드 산화물 반도체의 공정 파워에 따른 트랜지스터의 전기적 특성 연구

  • Yoo, Dong-Youn (Electronic Materials Center, Korea Institute of Science and Technology) ;
  • Chong, Eu-Gene (Electronic Materials Center, Korea Institute of Science and Technology) ;
  • Kim, Do-Hyung (Electronic Materials Center, Korea Institute of Science and Technology) ;
  • Ju, Byeong-Kwon (Department of Electrical Engineering, Display and Nanosystem Laboratory, Korea University) ;
  • Lee, Sang-Yeol (Electronic Materials Center, Korea Institute of Science and Technology)
  • 유동윤 (한국과학기술연구원 전자재료연구단) ;
  • 정유진 (한국과학기술연구원 전자재료연구단) ;
  • 김도형 (한국과학기술연구원 전자재료연구단) ;
  • 주병권 (고려대학교 일반대학원) ;
  • 이상렬 (한국과학기술연구원 전자재료연구단)
  • Received : 2011.07.12
  • Accepted : 2011.07.24
  • Published : 2011.08.01

Abstract

The dependency of sputtering power on the electrical performances in amorphous HIZO-TFT (hafnium-indium-zinc-oxide thin film transistors) has been investigated. The HIZO channel layers were prepared by using radio frequency (RF) magnetron sputtering method with different sputtering power at room temperature. TOF-SIMS (time of flight secondary ion mass spectrometry) was performed to confirm doping of hafnium atom in IZO film. The field effect mobility (${\mu}FE$) increased and threshold voltage ($V_{th}$) shifted to negative direction with increasing sputtering power. This result can be attributed to the high energy particles knocking-out oxygen atoms. As a result, oxygen vacancies generated in HIZO channel layer with increasing sputtering power resulted in negative shift in Vth and increase in on-current.

Keywords

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  2. J. Y. Kwon, J. S. Jung, K. S. Son, K. H. Lee, J. S. Park, T. S. Kim, J. S. Park, R. Choi, J. K. Jeong, B. W. Koo, and S. Y. Lee, J. Electrochem. Soc., 158, 433 (2011). https://doi.org/10.1149/1.3552700
  3. J. S. Park, T. S. Kim, K. S. Son, K. H. Lee, W. J. Maeng, H. S. Kim, E. S. Kim, K. B. Park, J. B. Seon, W. Choi, M. K. Ryu, and S. Y. Lee, Appl. Phys. Lett., 96, 262109 (2010). https://doi.org/10.1063/1.3435482
  4. S. Y. Lee, Y. W. Song, and S. P. Chang, J. KIEEME, 21, 3 (2008).
  5. J. K. Jeong, Soc. Information Display, 10, 42 (2009).
  6. W. F. Wu and B. S. Chiou, Thin Solid Films, 247, 201 (1994). https://doi.org/10.1016/0040-6090(94)90800-1
  7. E. Ziegler, A. Heirich, H. Oppermann, and G. Stover, Phys. Stat. Sol., A66, 635 (1981).
  8. J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and C. J. Kim, Appl. Phys. Lett., 93, 033513 (2008). https://doi.org/10.1063/1.2963978
  9. J. K. Jeong, H. W. Yang, J. H. Jeong, Y .G. Mo, and H. D. Kim, Appl. Phys. Lett., 93, 123508 (2008). https://doi.org/10.1063/1.2990657
  10. E. C. Chong, K. C. Jo, and S. Y. Lee, Appl. Phys. Lett., 96, 152102 (2010). https://doi.org/10.1063/1.3387819