DOI QR코드

DOI QR Code

Effect of Ta Substitution on the Dielectric and Piezoelectric Properties of (Li0.04(Na0.54K0.46)0.96(Nb0.96-xTaxSb0.04)O3Ceramics

Ta 치환이 (Li0.04(Na0.54K0.46)0.96(Nb0.96-xTaxSb0.04)O3 세라믹스의 유전 및 압전 특성에 미치는 영향

  • Noh, Jung-Rae (Department of Electrical Engineering, Semyung University) ;
  • Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University)
  • Received : 2011.06.03
  • Accepted : 2011.07.11
  • Published : 2011.08.01

Abstract

[ $[Li_{0.04}(Na_{0.54}K_{0.46})_{0.96}](Nb_{1-0.04-X}TaxSb_{0.04})O_3$ ]lead-free piezoelectric ceramics have been prepared by normal sintering at $1,100^{\circ}C$ for 5 h. X-ray diffraction analysis indicated that specimens demonstrate orthorhombic symmetry when $Ta\leq5$ mol%. While transforming into tetragonal symmetry when $x\geq20$ mol%. These suggest that the orthorhombic and tetragonal phases co-exist in the ceramics with 5 mol% $cm^3$. As the result of SEM images, the grain growth was decreased with the increase of Ta substitution. The ceramics become 'softening', leading to improvements in $k_p$, $\varepsilon_r$ and $d_{33}$, but a decrease in $Q_m$. Excellent properties of $k_p$= 0.46, $d_{33}$= 293 pC/N, ${\varepsilon}_r$= 1,583 and Tc= $340^{\circ}C$ were obtained when Ta= 15 mol%.

Keywords

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nagamura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  2. L. Egerton and D. M. Dillon, J. Am. Ceram. Soc., 42, 438 (1959). https://doi.org/10.1111/j.1151-2916.1959.tb12971.x
  3. D. Lin, K. W. Kwok, and H. L. W. Chan, Appl. Phys., A91, 167 (2008).
  4. Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett., 85, 4141 (2004).
  5. M. Matsubara, K. Kikuta, and S. Hirano, J. Appl. Phys., 97, 114105 (2005). https://doi.org/10.1063/1.1926396
  6. Y. Guo, K. Kakimoto, and H. Ohsato, Mater. Lett., 59, 241 (2005). https://doi.org/10.1016/j.matlet.2004.07.057
  7. M . M atsubara, T . Y am ag uchi, W . S ak am oto, K. Kikuta, T. Yogo, and S. J. Hirano, J. Am. Ceram. Soc., 88, 1190 (2005). https://doi.org/10.1111/j.1551-2916.2005.00229.x
  8. S. J. Zhang, R. Xia, T. R. Shrout, G. Z. Zang, and J. F. Wang, J. Appl. Phys., 100, 104108 (2006). https://doi.org/10.1063/1.2382348
  9. E. Hollenstein, M. Davis, D. Damjanovic, and N. Setter, Appl. Phys. Lett., 87, 3182905 (2005).
  10. M. Matsubara, K. Kikuta, and S. Hirano, J. Appl. Phys., 97, 114 (2005).
  11. Y. Lee, B. Seo, Y. Oh, and J. Yoo, J. Korean Phys. Soc., 57, 959 (2010). https://doi.org/10.3938/jkps.57.959
  12. B. Seo and J. Yoo, J. Korean Phys. Soc., 57 967 (2010). https://doi.org/10.3938/jkps.57.967
  13. Y. Lee, J. Yoo, K. Lee, I. Kim, J. Song, and Y. Park J. Alloys Comp., 506, 872 (2010). https://doi.org/10.1016/j.jallcom.2010.07.102
  14. D. Kim, J. Yoo, I. Kim, and J. Song, J. Appl. Phys., 105, 061642 (2009). https://doi.org/10.1063/1.3055353
  15. IEEE Standards Board, IEEE Standards on Piezoelectricity, IEEE Standard 176 (1978).
  16. J. Fu, R. Zou, D. Lv, Y. Liu, and Y. Wu, J. Mater. Sci., 21, 241 (2010). https://doi.org/10.1007/s10856-009-3864-4