DOI QR코드

DOI QR Code

주조유동 시뮬레이션에서 자유경계면 추적 기법 비교 연구

A Comparative Study of Interface Reconstruction Algorithms in The Molten Metal Flow

  • 최영심 (한국생산기술연구원 사이버설계센터) ;
  • 홍준호 (한국생산기술연구원 사이버설계센터) ;
  • 황호영 (한국생산기술연구원 사이버설계센터)
  • Choi, Young-Sim (e-Design Center, Korea Institute of Industrial Technology) ;
  • Hong, Jun-Ho (e-Design Center, Korea Institute of Industrial Technology) ;
  • Hwang, Ho-Young (e-Design Center, Korea Institute of Industrial Technology)
  • 투고 : 2011.05.19
  • 심사 : 2011.06.10
  • 발행 : 2011.06.30

초록

We applied two numerical schemes to improve accuracy of the solution in the flow simulation of molten metal. One method is Piecewise Linear Interface Calculation (PLIC) method and the other is Donor-Acceptor (D-A) method. In the present work, we have tested simple problems to verify the module of the interface reconstruction algorithms. After validations, accuracy and efficiency of these two methods have compared by simulating various real products. On the numerical simulation of free surface flow, it is possible for PLIC method to track very accurately the interface between phases. PLIC method, however, has the weak point where a lot of computational time hangs, though it shows the more accurate interface reconstruction. Donor-Acceptor method has enough effectiveness in the macro observation of mold filling sequence though it shows the inferior accuracy.

키워드

참고문헌

  1. E. G. Puckett et al. : J. Comput. Phys., "A high-order projection method for tracking fluid interfaces in variable density incompressible flows", 130 (1997) 269-282 https://doi.org/10.1006/jcph.1996.5590
  2. E. G. Puckett et al. : J. Comput. Phys., "A high-order projection method for tracking fluid interfaces in variable density incompressible flows", 130 (1997) 269-282 https://doi.org/10.1006/jcph.1996.5590
  3. W. F. Noh and P. R. Woodward : Lecture Notes in Physics, edited by A. I. van der Vooren and P. J. Zandbergen (Splinger- Verlag, New York/Berlin), "SLIC (Simple Line Interface Calculation)", 59 (1976) 330
  4. A. J. Chorin : J. Comput. Phys., "Flame advection and propagation algorithms", 35 (1980) 1 https://doi.org/10.1016/0021-9991(80)90030-3
  5. A. F. Ghoniem et al. :Phil. Trans. R. Soc. London A, "Numerical modeling of turbulent flow in a combustion tunnel", 304 (1982) 303 https://doi.org/10.1098/rsta.1982.0014
  6. J. A. Sethian : J. Comput. Phys., "Turbulent combustion in open and closed vessels", 54 (1984) 425 https://doi.org/10.1016/0021-9991(84)90126-8
  7. C. W. Hirt and B.D. Nichols : J. Comput. Phys., "Volume of fluid (VOF) method for the dynamics of free boundaries", 39 (1981) 201-225 https://doi.org/10.1016/0021-9991(81)90145-5
  8. D.L. Youngs : Numerical Methods for Fluid Dynamics (edited by K.W. Morton and M.J. Baines, Academic Press, New York), "Time-dependent multi-material flow with large fluid distortion", (1982) 273-285
  9. W.J. Rider and D.B. Kothe : J. Comput. Phys., "Reconstructing volume tracking", 141 (1998) 112-152 https://doi.org/10.1006/jcph.1998.5906
  10. J. A. Pilliod and E. G. Puckett : J. Comput. Phys., "Second-order accurate volume-of-fluid algorithm for tracking material interfaces", 199 (2004) 465-502 https://doi.org/10.1016/j.jcp.2003.12.023
  11. H. Liu, E. J. Lavernia, and R. H. Rangel : Atomization Sprays, "Numerical investigation of micropore formation during substrate impact of molten droplets in plasma spray processes", 4 (1994) 369 https://doi.org/10.1615/AtomizSpr.v4.i4.10
  12. G. Trapaga et al. : Metall. Trans. B., "Fluid flow, hetat transfer, and solidification of molten metal droplets impinging on subtrates-Comparison of numerical and experimental results", 23(6) (1992) 701 https://doi.org/10.1007/BF02656450
  13. M. Rudman : Int. J. Numer. Methods Fluids, "Volume-Tracking Method for Interfacial Flow Calculation", 24 (1997) 671 https://doi.org/10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9
  14. G.H. Son : Numerical Heat Transfer, "Efficient implementation of a coupled level-set and volume-of-fluid method for threedimensional incompressible two-phase flows", 43 (Part B) (2003) 549-565 https://doi.org/10.1080/713836317
  15. B.D. Nicholas, C.W. Hirt, and R.S. Hotchkiss : Tech. Report LA-8355, Los Alamos Scientific Laboratory, "SOLA-VOF: A solution algorithm for transient fluid flow with multiple free boundaries", (1980)
  16. O. Ubbink and R. I. Issa : J. Comput. Phys., "A method for capturing sharp fluid interfaces on arbitrary meshes", 153 (1999) 26-50 https://doi.org/10.1006/jcph.1999.6276