DOI QR코드

DOI QR Code

Review : Present Status of Green Chemistry

녹색화학 기술동향

  • 이준웅 (한국과학기술정보연구원 ReSEAT 사업팀)
  • Received : 2011.02.14
  • Accepted : 2011.03.25
  • Published : 2011.04.05

Abstract

Mankind has just begun to recognize that the most crucial factor to achieve the sustainable society in the future is green technology. Most countries support the development of green technology to prevent catastrophes from global warming, mainly in the areas of reducing carbon dioxide from the atmosphere. However, most products we consume in everyday life are produced through chemical processes, and we often oversee the fact that the huge amount of waste and energy during these chemical processes will seriously influence our goal to achieve our future society sustainable. Thus the technologies to minimize the amount of disposed waste and energy consumption during chemical processes may be more important than to reduce the greenhouse gases. In this regard this review introduces the recent status of green chemistry and future prospects in order to help our chemists and engineers establish research projects based on the green chemistry principles.

Keywords

References

  1. Horvath, I. and Anastas, P. T., Chem. Rev., 107, 2167, 2007. https://doi.org/10.1021/cr0783784
  2. Office of Pollution Prevention and Toxics, The Presidential Green Chemistry Challenge, Award Recipients, http://www.epa.gov/greenchemistry/pubs/docs/award_recipients_1996_2010.pdf
  3. 조선일보, B5, 2010년 10월 22일 판.
  4. Anastas, P. and Warner, J. C., "Green Chemistry : Theory and Practice", Oxford University Press, New York, 1998.
  5. Sheldon, R. A., Chem. Commun. 3352, 2008.
  6. Sheldon, R. A., Green Chem. 9, 1273, 2007. https://doi.org/10.1039/b713736m
  7. McCleian, P. P., Ind. Eng. Chem., 42, 2402, 1950. https://doi.org/10.1021/ie50492a013
  8. Kilty, P. A. and Sachtler, W. M. H., Catal. Rev., 10, 1, 1974. https://doi.org/10.1080/01614947408079624
  9. Trost, B. M., Angew. Chem. Int. Ed. Engl., 34, 259, 1995. https://doi.org/10.1002/anie.199502591
  10. Smith, M. B. and March, J., "Advanced organic Chemistry : Reactions Mechanisms and Structure", Wiley & Sons Inc., New York, 5th Ed., pp. 1205-1209, 2001.
  11. Epsztein, R. and Le Goff, N., Tetrahedron, 41, 5347, 1985. https://doi.org/10.1016/S0040-4020(01)96788-2
  12. Mei, C. M. and Li, C. J., Synlett., 1472, 2004.
  13. Anastas, P. and Eghali, N., Chem. Soc. Rev., 39, 301, 2010. https://doi.org/10.1039/B918763B
  14. Murai, S. et al., Nature, 366, 529, 1993. https://doi.org/10.1038/366529a0
  15. Stuart, D. R. and Fagnou, K., Science, 316, 1172, 2007. https://doi.org/10.1126/science.1141956
  16. Ariëns, E. J., Drug Metab. Rev., 15, 425, 1984. https://doi.org/10.3109/03602538409029970
  17. DeVito, S. C. et al., "Designing Safer Chemicals : Green Chemistry for Pollution Prevention", ACS Symposium Series, vol. 640, 1996.
  18. Dearden, J. C., J. Comput. Aided Mol. Des., 17, 119, 2003. https://doi.org/10.1023/A:1025361621494
  19. Li C.-J. et al., PNAS, USA., 105, 13197, 2008. https://doi.org/10.1073/pnas.0804348105
  20. Constable, D. J. C. et al., Green Chem., 4, 521, 2002. https://doi.org/10.1039/b206169b
  21. Cave, G. W. V. et al., Chem. Commun., 2159, 2001.
  22. Jessop, P. G. et al., Chem. Rev., 107, 2666, 2007. https://doi.org/10.1021/cr040199o
  23. Seddon, K. R., Nat. Mater., 2, 363, 2003. https://doi.org/10.1038/nmat907
  24. Tye, J. W. et al., PNAS, USA., 102, 16911, 2005. https://doi.org/10.1073/pnas.0508740102
  25. Pillai, C. K. S. et al., Prog. Polym. Sci., 34, 641, 2009. https://doi.org/10.1016/j.progpolymsci.2009.04.001
  26. Renault, F. et al., Eur. Polym. J., 45, 1337, 2009. https://doi.org/10.1016/j.eurpolymj.2008.12.027
  27. Taylor, L. D. et al., US Pat., 5177262, 1993.
  28. Trakhtenberg, S. et al., Chem. Rev., 107, 2174, 2007. https://doi.org/10.1021/cr0509455
  29. Yoon, N. M. et al., J. Org. Chem., 50, 2443, 1985. https://doi.org/10.1021/jo00214a009
  30. Noyori, R. et al., J. Am. Chem. Soc., 109, 5856, 1987. https://doi.org/10.1021/ja00253a051
  31. Grubbs, R. H., Tetrahedron, 60, 7117, 2004. https://doi.org/10.1016/j.tet.2004.05.124
  32. Boethling, R. S. et al., Chem. Rev., 107, 2207, 2007. https://doi.org/10.1021/cr050952t
  33. Keith, L. H. et al., Chem. Rev., 107, 2695, 2007. https://doi.org/10.1021/cr068359e
  34. Anastas, P. T. and Kirchhoff, M. M., Acc. Chem. Res., 35, 686, 2002. https://doi.org/10.1021/ar010065m
  35. Deetlefs, M. and Seddon, K. R., Green Chem., 12, 17, 2010. https://doi.org/10.1039/B915049H
  36. Seddon, K. R.. et al., Pure Appl. Chem., 72, 2275, 2000. https://doi.org/10.1351/pac200072122275
  37. Trost, B. M., Science, 254, 1471, 1991. https://doi.org/10.1126/science.1962206
  38. Sheldon, R. A., Green Chem. 9, 1273, 2007. https://doi.org/10.1039/b713736m
  39. Fannin, A. A. et al., J. Phys. Chem., 88, 2614, 1984. https://doi.org/10.1021/j150656a038
  40. Deetlefs, M. and Seddon, K. R., Green Chem., 5, 181, 2003. https://doi.org/10.1039/b300071k
  41. Namboodiri, V. V. and Varma, R. S., Tetrahedron Lett., 43, 5381, 2002. https://doi.org/10.1016/S0040-4039(02)01075-4
  42. Xu, D. Q., et al., Synthesis, 2626, 2003.
  43. Smith, G. P., et al., J. Am. Chem. Soc., 111, 525, 1989. https://doi.org/10.1021/ja00184a020
  44. Li, C.-J. and Chen, L., Chem. Soc. Rev., 35, 68, 2006. https://doi.org/10.1039/B507207G
  45. Plechkova, N. V. and Seddon, K. R., Chem. Soc. Rev., 37, 123, 2008. https://doi.org/10.1039/B006677J
  46. Chen, J. et al., Green Chem., 7, 64, 2005. https://doi.org/10.1039/b413546f
  47. Brennecke, J. F., Chem. Ind., 831, 1996.
  48. Eckert, A. et al., Nature, 383, 313, 1996. https://doi.org/10.1038/383313a0
  49. Coleman, D. and Gathergood, N., Chem. Soc. Rev., 39, 600, 2010. https://doi.org/10.1039/b817717c
  50. Salehpour, S. and Dube, M. A., Green Chem., 10, 321, 2008. https://doi.org/10.1039/b715047d
  51. Aparicio, S. and Alcalde, R., Green Chem., 11, 65, 2009. https://doi.org/10.1039/B811909K
  52. Virot, M. et al., J. Chromatogr., A, 1196-1197, 147, 2008. https://doi.org/10.1016/j.chroma.2008.04.035
  53. K. Reddy, C. S. et al., Bioresour. Technol., 87, 137, 2003. https://doi.org/10.1016/S0960-8524(02)00212-2
  54. Leitner, W., Green Chem., 11, 603, 2009. https://doi.org/10.1039/b907013n
  55. Clark, L. W., J. Am. Chem. Soc., 177, 6191, 1955.
  56. Wolfson, A. et al., Tetrahedron : Asymmetry, 17, 2043, 2006. https://doi.org/10.1016/j.tetasy.2006.07.026
  57. Wolfson, A. and Dlugy, C., Chem. Pap., 61, 228, 2007. https://doi.org/10.2478/s11696-007-0026-3
  58. Gu, Y. and Jerome, F., Green Chem., 12, 1127, 2010. https://doi.org/10.1039/c001628d
  59. Gu, Y., et al., Adv. Synth.. Catal., 350, 2007, 2008. https://doi.org/10.1002/adsc.200800328
  60. He, F. et al., Green Chem., 11, 1767, 2009. https://doi.org/10.1039/b916015a
  61. Li, M. et al., Adv. Synth. Catal., 352, 519, 2010. https://doi.org/10.1002/adsc.200900770
  62. Tan, J.-N. et al., Green Chem., 12, 908, 2010. https://doi.org/10.1039/b924699a
  63. Lenardão, E. J. et al., J. Braz. Chem. Soc., 20, 2009.
  64. Andrade, L. H. et al., Tetrahedron: Asymmetry, 20, 1521, 2009. https://doi.org/10.1016/j.tetasy.2009.05.033
  65. Sinha, A. and Sharma, B. P., Mater. Res. Bull., 37, 407, 2002. https://doi.org/10.1016/S0025-5408(01)00819-4
  66. Sinha, A. and Sharma, B. P., Bull. Mater. Sci., 28, 213, 2005. https://doi.org/10.1007/BF02711250
  67. Subramanian, V. et al., Chem. Phys. Lett., 453, 242, 2008. https://doi.org/10.1016/j.cplett.2008.01.042
  68. Coperet, C. et al., Angew. Chem., Int. Ed., 42, 156, 2003. https://doi.org/10.1002/anie.200390072
  69. Polshettiwar, V. et al., Coord. Chem. Rev., 253, 2599, 2009. https://doi.org/10.1016/j.ccr.2009.06.001
  70. Polshettiwar, V. et al., Green Chem. 11, 127, 2009. https://doi.org/10.1039/B815058C
  71. Polshettiwar, V. and Varma, R. S., Green Chem. 12, 743, 2010. https://doi.org/10.1039/b921171c
  72. Joo, S. H. et al., Nat. Mater., 8, 126, 2009. https://doi.org/10.1038/nmat2329
  73. Xie, X. et al., Nature, 458, 746, 2009. https://doi.org/10.1038/nature07877
  74. Lee, I. et al., Nat. Mater., 8, 132, 2009. https://doi.org/10.1038/nmat2371
  75. Chandler, B. D. and Gilbertson, J. D., Top. Organomet. Chem., 20, 97, 2006.
  76. Crump, C. J. et al., Top. Catal., 49, 233, 2008. https://doi.org/10.1007/s11244-008-9093-0
  77. Grirrane, A. et al., Science, 322, 1661, 2008. https://doi.org/10.1126/science.1166401
  78. Pelzer, K. et al., Chem. Mater., 16, 4937, 2004. https://doi.org/10.1021/cm049086b
  79. Boualleg, M. et al., Chem. Mater., 21, 775, 2009. https://doi.org/10.1021/cm803031c
  80. Phua, P.-.H. et al., Chem. Commun., 3747, 2009.
  81. Zong, X. et al., Chem. Commun., 4536, 2009.
  82. Abu-Reziq, R. et al., J. Am. Chem. Soc., 128, 5279, 2006. https://doi.org/10.1021/ja060140u
  83. Dalaigh, C. O. et al., Angew. Chem., Int. Ed., 46, 4329, 2007. https://doi.org/10.1002/anie.200605216
  84. Gleeson, O. et al., Chem.-Eur. J., 15, 5669, 2009. https://doi.org/10.1002/chem.200900532
  85. Strauss, C. R. and Varma, R. S., Top. Curr. Chem., 266, 199, 2006. https://doi.org/10.1007/128_060
  86. Polshettiwar, V. and Varma, R. S., Chem. Soc. Rev., 37, 1546, 2008. https://doi.org/10.1039/b716534j
  87. Bogdal, D. et al., Tetrahedron, 59, 649, 2003. https://doi.org/10.1016/S0040-4020(02)01533-8
  88. Kaiser, N. F. K. et al., Angew. Chem., Int. Ed., 39, 3595, 2000. https://doi.org/10.1002/1521-3773(20001016)39:20<3595::AID-ANIE3595>3.0.CO;2-S
  89. Razzaq, T. et al., J. Org. Chem., 73, 6321, 2008. https://doi.org/10.1021/jo8009402
  90. Cadierno, V. et al., Chem.-Eur. J., 14, 6601, 2008. https://doi.org/10.1002/chem.200800847
  91. Polshettiwar, V. and Varma, R. S. Chem.-Eur. J., 15, 1582, 2009. https://doi.org/10.1002/chem.200802264
  92. Polshettiwar, V. and Varma, R. S., Tetrahedron, 66, 1091, 2010. https://doi.org/10.1016/j.tet.2009.11.015
  93. Polshettiwar, V. et al., Chem. Commun., 1837, 2009.

Cited by

  1. Priority survey between indicators and analytic hierarchy process analysis for green chemistry technology assessment vol.30 Suppl, 2015, https://doi.org/10.5620/eht.s2015003