유기농법과 관행농법에 의해 재배한 '신고'배 과원 토양의 물리화학적 및 미생물학적 특성 비교

Comparison of Soil Physico-chemical and Microbial Characteristics in Soil of 'Niitaka' Pear Orchards between Organic and Conventional Cultivations

  • 최현석 (국립농업과학원 유기농업과) ;
  • 이웅 (전남대학교 원예학과) ;
  • 김월수 (전남대학교 원예학과) ;
  • 이연 (국립농업과학원 유기농업과) ;
  • 지형진 (국립농업과학원 유기농업과)
  • 투고 : 2010.02.26
  • 심사 : 2011.06.22
  • 발행 : 2011.06.30

초록

최근에 소비자들의 안전 농산물에 대한 관심과 정부의 정책적인 친환경농업에 대한 지원은 유기농 재배를 지속적으로 발전시켜 왔다. 본 연구는 유기농 재배 과원과 관행 과원간의 토양 물리성과 화학성 및 미생물성에 대한 시기별 비교분석을 통하여 변화양상을 구명하고자 수행되었다. 토양 가비중과 고상 및 경도는 유기농 과원에서 통계적으로 유의성있게 낮게 나타났다. 토양 pH와 유기물 함량은 3월에서 8월까지 증가하는 경향이 나타났고, 유기농 과원에서 관행과원에 비하여 높은 경향을 나타내었다. 전질소와 유효인산은 처리구에 상관없이 3월에서 8월까지 각각 감소하는 경향을 보였으며, 유기농 과원에서 관행과원보다 전질소는 높았으나 유효인산은 낮은 경향을 나타내었다. 토양 미생물 탄소 생체량은 처리구에 상관없이 3월부터 8월까지 증가(유기농 36%, 관행 15%)하였고, 미생물 질소생체량은 6월에 가장 높았고, 유기농 과원에서 관행과원보다 지속적으로 높은 미생물 생체량을 나타내었다. 토양중 dehydrogenase와 chitinase activity는 3월과 8월보다 6월에 가장 높았고, ${\beta}$-glucosidase activity는 시기적으로 점차 감소(유기농 38%, 관행 48%)하였으며, acid phosphatase activity는 증가하였다. 유기농 배 과원토양에서 관행재배에 비하여 6월에 조사된 acid phosphatase activity를 제외하고는 모든 효소활성이 시기에 상관없이 높은 분포를 나타내었다.

Consumers' interest and government's support for the fruits rapidly increased organic fruit productions. This study was examined to compare the soil physicochemical and microbial properties of orchards soil in conventionally and organically management systems. Organic cultivation had lower soil bulk density, solid phase, and penetration resistance than the conventional cultivation. Soil pH and organic matter contents increased from March to August, and the values were greater in the organic cultivation than the conventional cultivation. Total nitrogen (N) and phosphorous concentrations decreased from March to August, and the organic soils had greater N but lower phosphorous concentrations than the conventional soils. Soil microbial carbon biomass increased 36% and 15% for organic and conventional cultivations, respectively, from March to August. Soil microbial N biomass was greater in June than March or August, and the organic cultivation had a greater biomass N compared to the conventional cultivation. Soil dehydrogenase and chitinase activities were greater in June than in March or August. ${\beta}$-glucosidase activity declined in both cultivations, while the phosphatase activity increased. Organic cultivation had greater enzyme activities in March, June, and August, except for the acid phosphatase activity in June.

키워드

참고문헌

  1. Benitez, E., R. Nogales, M. Campos, and F. Ruano. 2006. Biocemical variability of olive orchard soils under different management system. Appl. Soil Ecol. 32: 221-231. https://doi.org/10.1016/j.apsoil.2005.06.002
  2. Blaise, D., T. R. Rupa, and A. N. Bonde. 2004. Effect of organic and modern method of cotton cultivation on soil nutrient status. Commun. Soil Sci. Plant Anal. 35: 1247-1261. https://doi.org/10.1081/CSS-120037543
  3. Cavero, J., R. E. Plant, C. Shennan, and D. B. Friedman. 1997. The effct of nitrogen source and crop rotation on the growth and yield of processing tomatoes. Nutr. cycl. Agroecosys. 47: 271-282.
  4. Cho, H. J., S. W. Hwang, K. H. Han, H. R. Cho, J. H. Shin, and L. Y. Kim. 2009. Physicochemical properties of upland soils under organic farming. Kor. J. Soil Sci. Fert. 42: 98-102.
  5. Choi, D. G., B. S. Seo, and I. K. Kang. 2009. Changes of soil, growth, and fruit quality by soil surface management under tree in sod culture of apple orchard. Kor. J. Hort. Sci. Technol. 27: 174-180.
  6. Choi, K. H., D. H. Lee, Y. Y. Song, J. C. Nam, and S. W. Lee. 2010. Current status on the occurrence and management of disease, insect and mite pests in the non-chemical or organic cultured apple orchards in Korea. Kor. J. Organic Agric. 18: 221-232.
  7. Chung, J. B. and Y. J. Lee. 2008. Comparison of soil nutrient status in conventional and organic apple farm. Kor. J. Soil Sci. Fert. 41: 26-33.
  8. Clark, M. S., W. R. Horwath, C. Sherman, and K. M. Scow. 1998. Changes in soil chemical properties resulting from organic and low-input farming practices. Agron. J. 90: 662-671. https://doi.org/10.2134/agronj1998.00021962009000050016x
  9. Duxbury, J. M., M. S. Smith, and J. W. Doran. 1989. Soil organic matter as source and a sink of plant nutrients, pp. 33-68. In: Colenman, D.C. et al. (eds.). Dynamics of soil organic matter in tropical ecosystems, Univ. Hawaii Press, Honolulu, U.S.A.
  10. Gerhardt, R. A. 1997. A comparative analysis of the effects of organic and conventional farming systems on soil structure. Biol. Agric. Hort. 14: 139-157. https://doi.org/10.1080/01448765.1997.9754803
  11. Gil-Sotres, F., C. Trasar-Cepeda, M. C. Leiros, and S. Seoane. 2005. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 37: 877-887. https://doi.org/10.1016/j.soilbio.2004.10.003
  12. Glover, J. D., J. P. Reganol, and P. K. Andrews. 2000. Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agric. Ecosys. Environ. 80: 29-45. https://doi.org/10.1016/S0167-8809(00)00131-6
  13. Goyal, S., M. M. Mishra, I. S. Hooda, and R. Singh. 1992. Organic matter-microbial biomass relationships in field experiments under tropical conditions: effects of inorganic fertilization andorganic amendments. Soil Bio. & Biochem. 24: 1081-1084. https://doi.org/10.1016/0038-0717(92)90056-4
  14. Granatstein, D. 2002. North American trends for organic tree fruit production. Compact Fruit Tree 35: 83-87.
  15. Joergensen, R. G. and P. C. Brookes. 1990. Ninhydrin-reactive N measurements of microbial biomass in 0.5M K2SO4 soil extracts. Soil Biol. Biochem. 19: 1023-1027.
  16. Khaleel, R., K. R. Reddy, and M. R. Overcash. 1981. Changes in soilphysical properties due to organic waste applications: a review. J. Environ. Qual. 10: 133-141.
  17. Kim, P. J., S. M. Lee, H. B. Yoon, Y. H. Park, J. Y. Lee, and S. C. Kim. 2000. Characteristics of phosphorus accumulation in organic farming fields. Kor. J. Soil Sci. & Fert. 33: 234-241.
  18. Kim, J. G., S. B. Lee, and S. J. Kim. 2001. The effect of long-term application of different organic material sources on soil physical property and microflora of upland soil. Kor. J. Soil Sci. Fert. 34: 365-372.
  19. Kim, J. H. 2004. Soil Management, pp. 157-173. In: New technology in pear culture, Ohsung Publication, Seoul, Korea.
  20. Lagomarsino, A., M. C. Moscatelli, A. Di Tizio, R. Mancinelli, S. Grego, and S. Marinari. 2009. Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a mediterranean environment. Ecolog. Indic. 9: 518-527. https://doi.org/10.1016/j.ecolind.2008.07.003
  21. Lee, S. H., W. S. Kim, K. Y. Kim, T. H. Kim, H. Whangbo, W. J. Jung, and S. J. Chung. 2003. Effect of chitin compost incorporated with chitinolytic bacteria and rice bran on chemical properties and microbial community in pear orchard soil. J. Kor. Soc. Hort. Sci. 44: 201-206.
  22. Mader, P., A. FlieBbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli. 2002. Soil fertility and biodiversity in organic farming. Science 296: 1694-1697. https://doi.org/10.1126/science.1071148
  23. Marinari, S., R. Mancinelli, E. Campiglia, and S. Grego. 2006. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecol. Indic. 6: 701-711. https://doi.org/10.1016/j.ecolind.2005.08.029
  24. Mazzarino, M. J., L. Szott, and M. Jimenes. 1992. Dynamics of soil total C and N, microbial biomass, and water-soluble C in tropical agro-ecosystems. Soil Biol. Biochem. 25: 205-214.
  25. McGill, W. B., K. R. Cannon, J. A. Roberson, and F. D. Cook. 1986. Dynamics of soil microbial biomass and water-soluble organic carbon in Breton L after 50 years of cropping to two rotations. Can. J. Soil Sci. 66: 1-19. https://doi.org/10.4141/cjss86-001
  26. Melero, S., J. C. R. Porras, J. F. Herencia, and E. Madejon. 2006. Chemical and biochemical properties in silty loam soil under conventional and organic management. Soil. Till. Res. 90: 162-170. https://doi.org/10.1016/j.still.2005.08.016
  27. Miller, M., A. Palojarvi, A. Rangger, M. Reeslev, and A. Khioller. 1998. The use of fluorogenic sustrates to measure fungal presence and activity in soil. Appl. Environ. Microbiol. 64: 613-617.
  28. NIAST. 1999. A guidance of fertilization for crops. National Institute of Agricultural Science and Technology. Suwon, Korea.
  29. NIAST. 2000. Analysis method of Soil and plant body. National institute of Agricultural Science and Technology. Suwon, Korea.
  30. Peck, G. M., P. K. Andrews, C. Rhichter, and J. P. Reganold. 2005. Internationalization of the organic fruit market: The case of Washington State's organic apple exports to the European Union. Renewable Agr. Food Sys. 20: 101-112. https://doi.org/10.1079/RAF2004102
  31. Poudel, D. D., W. R. Horwarth, W. T. Lanini, S. R. Temple, and A. H. C. van Bruggen. 2002. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional in northern California. Agric. Ecosys. Environ. 90: 125-137. https://doi.org/10.1016/S0167-8809(01)00196-7
  32. Riley, H., R. Pommeresche, R. Eltun, S. Hansen, A. Korsaeth. 2008. Soil structure, organic matter and earthworm activity in a comparison of cropping systems with contrasting tillage, rotations, fertilizer levels and manure use. Agric. Ecosyst. Environ. 124: 275-284. https://doi.org/10.1016/j.agee.2007.11.002
  33. Sakamoto, K. and Y. Oba. 1993. Relationship between available N and soil biomass in upland field soils. Jpn. J. Soil Sci. Plant Nutr. 64: 42-48.
  34. Skujins, J. 1976. Extracellular enzymes in soil. CRC Crit. Rev. Microbiol. 4: 383-421. https://doi.org/10.3109/10408417609102304
  35. Swezey, S. L., M. R. Werner, M. Buchanan, and J. Allison. 1998. Comparison of conventional and organic apple production systems during three years of conversion to organic management in coastal California. Amer. J. Alter. Agric. 13: 162-180. https://doi.org/10.1017/S0889189300007876
  36. Tabatabai, M. A. 1982. Soil enzymes, pp. 903-947. In: Page, A. L., R. H. Miler, and D. R. Keeney. (eds.). Methods of soil analysis, Part 2. Chemical and Microbiological properties, Amer. Soc. Agron. Madison, WI(USA).
  37. Tate, K. R., D. J. Ross, and C. W. Feltham. 1988. A direct extraction method to estimate soil microbial C: effect of experimental variables and some different calibration procedure. Soil Biol. Biochem. 20: 329-335. https://doi.org/10.1016/0038-0717(88)90013-2
  38. Trevors, J. T. 1984. Effect of substrate concentration, inorganic nitrogen, $O_{2}$ concentration, temperature and pH on dehydrogenase activity in soil. Plant Soil 77: 285-293. https://doi.org/10.1007/BF02182931
  39. Trotta, A., G. C. Verese, E. Gnavi, A. Fusconi, S. Sampo, and G. Gerta. 1996. Interaction between the soilborne root pathogen Phytoptthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomos mosseae in tomato plants. Plant Soil. 185: 199-209. https://doi.org/10.1007/BF02257525
  40. Van Diepeningen, A. D., O. J. de Vos, G. W. Korthals, and A. H. C. van Bruggen. 2006. Effect of organic versus conventional management on chemical and biological parameters in agricultural soils. Appl. Soil Ecol. 31: 120-135. https://doi.org/10.1016/j.apsoil.2005.03.003
  41. Weon, H. Y., J. S. Kwon, Y. K. Shin, S. H. Kim, J. S. Suh, and W. Y. Choi. 2004. Effect of composted pig manure application on enzyme activities and microbial biomass of soil under chinese cabbage cultivation. Kor. J. Soil Sci. Fert. 37: 109-115.
  42. Yedidia, I., N. Benhamou, Y. Kapulnik, and I. Chet. 2000. Induction and accumulation of PR protein activities during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 38: 863-873. https://doi.org/10.1016/S0981-9428(00)01198-0
  43. Young, G. 2002. A fieldman's perspective on growing and packing organic fruit. Compact Fruit Tree 35: 90-91.