
A Dynamic Path Computation Database Model in Mobile LBS System 43

A Dynamic Path Computation Database

Model in Mobile LBS System

모바일 LBS 시스템에서 동적 경로 계산

데이터베이스 모델

주 용 진
*

Yong Jin Joo

요 약 최근, 모바일 시스템에서 DBMS를 활용한 치기반서비스에 한 심이 높아지고 있으며, 향

상된 차량항법 (in-vehicle navigation) 시스템에 있어 효과 인 장, 트랜잭션 리, 모델링과 공간 질

의를 통해 행 일 기반 시스템이 가지는 한계를 극복할 것으로 기 되고 있다. 특히, 도로 네트워크

데이터는 경로 탐색 시스템에 있어 가장 요한 역에 해당하며 효율 인 리와 유지를 필요로 한다.

이에 본 연구는 모바일 LBS 시스템에서 상 인 네트워크 데이터를 한 그래 기반 지오 데이터베

이스 모델 개발과 휴리스틱 근에 기반을 둔 동 경로 계산 알고리즘을 제시하는 것을 목 으로 한다.

이를 해, 계층 네트워크를 지원하는 데이터 모델을 설계하고, 모바일 LBS 시스템에서 수행 능력을

평가하기 한 경로 계산 시스템을 구 하 다. 마지막으로, 제시된 계층 그래 모델 기반 경로 계산 알

고리듬은 네트워크를 구성하는 노드 개수를 여 탐색 속도와 효율 메모리 사용에 기여할 수 있을 확

인 할 수 있다.

키워드：GIS 로그래 , 모바일 웹 서비스, 치기반서비스. 동 경로계획

Abstract Recently, interest in location-based service (LBS) which utilizes a DBMS in mobile

system environment has been increasing, and it is expected to overcome the existing file-based

system’s limitation in advanced in-vehicle system by utilizing DBMS’s advantages such as

efficient storage, transaction management, modelling and spatial queries etc. In particular, the road

network data corresponds to the most essential domain in a route planning system, which needs

efficient management and maintenance. Accordingly, this study aims to develop an efficient

graph-based geodata model for topological network data and to support dynamic path computation

algorithm based on heuristic approach in mobile LBS system. To achieve this goal, we design a

data model for supporting the hierarchy of network, and implement a path planning system to

evaluate its performance in mobile LBS system. Last but not least, we find out that the designed

path computation algorithm with hierarchical graph model reduced the number of nodes used for

finding and improved the efficiency of memory.

Keywords：GIS Programming, Mobile Web Service, LBS, Dynamic Route Planning,

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government
(NRF- 2009-413-D00001).

* Research Prof, Yong Jin Joo. Institute of Urban Science, University of Seoul, yjjoo75@uos.ac.kr(Corresponding
Author)

1. Introduction

 The impact of tele and mobile information tech-

nology will increase the need for efficient access to

geodata to be used in route planning system [3, 8].

The digital map used in existing route planning

system is a static data provided as a CD-ROM or

DVD, which data is periodically updated through

44 한국공간정보학회지：제19권 제3호 (2011. 06)

replacement of the disk. The digital map is provided

as each service provider’s proprietary format (PSF

: Physical Storage Format), and it is converted from

raw data to the PSF at every updating period [1].

This data designed in PSF are service maps that

can be accessed quickly and compressed efficiently.

Since this file data management structure has great

complexity in the data structure and conversion

process, however, it is not suitable to process the

map data varying in real time [11, 9, 10]. In partic-

ular, since the road network data in the route plan-

ning system has changes of data such as traffic

congestion, average speed etc. every a few minutes,

the use of spatial database is required to reflect it

effectively[2]. Nevertheless, there has been few em-

pirical research regarding spatial database model for

map consistency of network topology which is ca-

pable of the supply of location-based data queries

in mobile system. Therefore, this study aims to pro-

vide a comprehensive and flexible framework for a

graph-based geodata model, not only considering

features of the topological network data in an em-

bedded DBMS, which is a lightweight DBMS for

effective management of quite small databases con-

tained in tiny mobile devices, but also supporting

dynamic path computation algorithm based on heu-

ristic approach in mobile LBS system.

 For this purpose, we firstly analyze the KIWI for-

mat and its configurations for a clear understanding

of the existing advanced in-vehicle application in

the following sections. Secondly, a scheme of the

road network are designed for a route planning

system in an embedded DBMS. Thirdly, we de-

signed dynamic path computation algorithm based

on heuristic approach with the help of suggested

physical data model in order to save memory and

increase speed of path computation through mini-

mizing search space in large-scale road. In partic-

ular, we design shortest graph models combined

plain(non-hierarchial structure) with hierarchical

graph model, describing dynamic scenarios to apply.

Then, a route planning system is implemented to

support the model designed for performance

evaluation. Next, performance of path finding is

measured to verify the efficiency of the data model

through case study. Finally, we draw some findings

in the conclusion.

2. Design of a network database model

2.1 Analysis on requirements for data structure in CNS

 The KIWI data model is a standard navigation

service format developed to solve lacks of data in-

teroperability in Japan. This section would like to

extract requirements for designing a network road

model by analyzing data structure of KIWI and its

model. The KIWI data is composed of main map da-

ta frame, route planning data frame, route guidance

data frame, index data etc., which they are asso-

ciated with each other by necessity. The route plan-

ning data frame displays roads of map data on the

screen, and the route guidance data frame carries

out path finding to inform the results to users. In

addition, the index data is used to access the map

data quickly. The KIWI map data is managed in a

parcel unit, and organized as a hierarchical structure

which consist of arbitrary rectangles called regular

parcels. Figure 1 shows the parcel hierarchical

structure for each level of the KIWI data[6].

Fig. 1. Hierarchical structure of KIWI[8]

 In the hierarchical structure, parcels are in-

tegrated in the higher level depending on the man-

agement unit. In other words, a parcel in the higher

level corresponds multiple parcels in the lower level.

A Dynamic Path Computation Database Model in Mobile LBS System 45

Fig. 2. Structure of the storage model

The hierarchical structure allows acquiring some

range of map data corresponding to the required

scale.

 Consequently, considerations in the design of

network road model derived from an analysis on the

KIWI data model are as follows. First, three data

of path indicating, finding, guiding should be organ-

ically associated with each other. The path finding

is important to calculate an economical path, and

should be carried out to satisfy the turn controls at

intersections. In addition, geometrical information

on the road network could be displayed on the

screen, and users could be accurately guided to their

destinations through the results of path finding. In

order to display a map depending on its level (scale)

and find paths quickly, a hierarchical data structure

should be defined to design a schema. For this pur-

pose, multiple levels are set up so that data of each

corresponding level has different complexity. There

are layers based on tiles with each other topic such

as buildings, roads, and water systems etc., which

a layer has several levels with different complexity

of geographical data, and each level makes different

layers with the same scale are managed as an in-

tegrated layer.

2.2 Logical data modeling

2.2.1 Topological model of hierarchy

 Nodes and links on the road network should have

a topological structure for path finding. The topo-

logical structure means relationships connected be-

tween neighboring objects, which is said relation-

ships connected between intersections(nodes) and

roads(links) in the road network. If a topological

structure is made up with a structure in a

large-scale road network, it is inefficient because

unnecessary data is used for finding. Therefore, the

topological structure of road network as a map unit

should be taken into account. In addition, in-

formation on connections between maps need to be

constructed to interconnect the topological struc-

tures in a map unit. This could make only the map

going through from a starting point to a destination

is used for finding.

 If both roads with a high road class and roads

with a low road class are to be used for finding in

a large-scale road network, the finding speed is

lowered and not only memory usages become in-

efficient but also quality of finding results is

lowered. This is based on an empirical fact that

driving via main roads with a high road class such

as expressways, national highways could arrive at

a destination faster than driving via local roads with

a low road class for long-distance driving.

Therefore, a hierarchical finding should be done by

passing through links with the higher level when

finding a long-distance path. For this purpose, it is

needed to establish the topological structure of

higher level data. Links of every level are used for

road finding before entering into a road with a high-

er level from the starting point, and thereafter only

roads with a higher level could be used for finding.

2.2.2 Storage model

 This section defines a storage model to manage

GIS data into a relational database and to process

queries. The storage structure is based on the

“SQL92” of OGC[12], which is a standard schema

suggested for extending to a spatial database for

relational databases. Figure 2 indicates the structure

of the storage model. The table is divided into a

Spatial Index (S) table, which stores information for

space indexing, a Feature (F) table, which stores

actual data, and an Attribute (A) table, which stores

a variety of attribute information. The Feature (F)

table physically stores geometrical information on

46 한국공간정보학회지：제19권 제3호 (2011. 06)

Fig. 3. Physical model of network data

roads into binary columns. The Attribute (A) table

stores attribute information such as distances,

number of lanes, title of direction etc. for route

guidance. Since there is an attribute in every stored

geometrical object, the Feature (F) table has a

one-to-one relationship with the Attribute (A)

table. The Spatial Index (S) table plays a role as an

index during space queries, which stores MBR

(Minimum Bounding Rectangle) information, which

is the minimum bounding rectangle of correspond-

ing object, and IDs of grid indexes, which are space

indexes. A one-to-many structure is used to store

grid IDs into the index table of the relational access

method.

2.3 Physical table scheme

 Three elements of path finding, path indication,

and path guidance should be involved in a data

model for the road network. First, a topological

structure of nodes and links, information on con-

nected neighboring maps, and turn controls etc.

should be stored in the path finding element.

Second, geometrical information for indicating paths

should be stored in the path indication element.

Third, information for guidance such as direction

names, road names etc. should be stored in the path

guidance element. Therefore, the data table for road

networks is divided into three elements above, and

a physical model is designed by applying the stor-

age model designed earlier as shown in Figure 3.

2.3.1 Path finding table

 The table for path finding is composed of four ta-

bles for nodes (ND), links (RPLink), information on

connected neighboring maps (AdjustNodeInfoTable),

and turn controls (TN). These tables are used for

path finding so that all the storage type is Attribute

(A). The node (ND) table stores node information,

which is the basic unit for finding and guidance, and

the link (RPLink) table stores link information con-

nected to nodes. Since multiple links are connected

to a node, the node (ND) table and the link (RPLink)

table have a one-to-many relationship. Nodes and

links form the topological relationships and each

object has a unique ID with a map unit to make the

path finding could be done as a map unit. The in-

formation on connected neighboring maps (Adjust-

NodeInfoTable) table stores connection information

on neighboring nodes between maps to make the

path finding could be done across the map

boundaries. The turn controls (TN) table stores

turn information on each node to control conditions

for path finding. There may be also no turn control

or several ones for certain nodes. In addition to

above four tables, there are higher node (ND-High),

higher link (RPLink-High) tables for finding the

hierarchy. These two tables have a higher level of

topological structure to make the hierarchical find-

ing could be done.

2.3.2 Path indicating table

 The table for path indication is composed of three

tables such as Geometry (RdF), Index (RdS), and

Indication Information (RdClass). Examining each

storage type, the storage type of Geometry is

Feature (F) because it stores shape coordinates of

each link, Spatial Index (S) for the Index, and

Attribute (A) for the class. The Geometry (RdF) ta-

ble is matched to the link (RpLink) table with a

one-to-one relationship and is searched using the

index (RdS) table. The MBR and grid index of each

link are stored in the index (RdS) table so that it

is used to search a link object in certain areas. The

indication order and color information are stored for

A Dynamic Path Computation Database Model in Mobile LBS System 47

each road class of each link in the indication in-

formation (RdClass).

2.3.3 Path guidance table

 The table for path guidance is composed of three

tables for node guidance (RgNd), link guidance

(RgLink), and direction guidance (RgToward). All

the storage types are Attribute (A). The node guid-

ance (RgNd) table stores intersection names for

path guidance. Since a node has no intersection

name or one, the node (Nd) table and the node guid-

ance (RgNd) table have a one-to-one or one-to-

zero relationship. The link guidance (RgLink) table

stores road names, number, and attribute in-

formation on facilities of roads for path guidance.

The direction guidance (RgToward) table stores di-

rection name information and has relations with the

node (Nd) and link (RpLink) tables. Components of

above three data models for the road network are

organically operated each other. The path found

through path finding elements is related with the

path indication elements to display on the map. In

addition, intersection names, direction names, and

road facilities etc. could be guided by moving along

the found path and using the path guidance

elements.

3. Dynamic path computation algorithm

 In this chapter, we designed dynamic path com-

putation algorithm based on heuristic approach in

order to save memory and increase speed of path

computation through minimizing search space in

large-scale road. In other words, Heuristic approach

is the aspect point of empirical fact of arriving des-

tination more quickly if we drive higher rank road

such as highway and main road etc. rather than

lower rank road in case of a long drive. So we de-

sign shortest graph models combined plain graph

model with hierarchical graph model, describing dy-

namic scenarios. In this study, we constructed

2-level graph hierarchy in order to apply hier-

archical graph model, developing topological net-

work model in higher level through suggested

physical data model. In addition, we constructed

node and link structure in low level, endowed

unique id number to ensure path finding every sin-

gle map.

3.1 Design of shortest graph models

 The most classical shortest graph model is the

Dijkstra algorithm[5], whose complexity is O(|E| +

|V| log|V|), where |V| is the number of vertices and

|E| is the number of arcs. However, its performance

deteriorates in terms of time efficiency when applied

to large road networks, motivating several techni-

ques for improving its response time. The A* algo-

rithm[4], which uses a heuristic function to estimate

the cost of the shortest path, is an improved version

of the Dijkstra algorithm. The A* algorithm ach-

ieves acceleration by first searching the most prom-

ising nodes, and it guarantees optimal solution, pro-

vided that the cost function underestimates the ac-

tual shortest path. However, the computational ef-

fort is still quite high as the network size becomes

large, making it unsuitable for real-time routing

[14]. Hierarchical Strategy in order to figure out

these problems has turned out to be very effective

in robotic route planning and navigation system [7].

 Graph model applied in this paper is extension

model based on concept of HIPLA [15] which has

known as a model for computing near optimal paths

in large node graph as a similar algorithm as we do.

That is, HIPLA(Hierarchical path planning algo-

rithm) computes shortest path by finding among

boundary nodes of the sub-graph and concatenates

each route computed from edge to edge. Figure 4 il-

lustrates path computed by HIPLA. Source

sub-graph path Ps = s → v1 is concatenation of path

computed from s to boundary node d1 with edge

connecting d1 and boundary node v1 where d1 → v1

indicates an edge between d1 and v1 while s→ →d1

indicates path between s and d1.

 However, this method decides node which will be

surely passed in advance, performing route finding

among boundary nodes. That’s why this limitation

48 한국공간정보학회지：제19권 제3호 (2011. 06)

adj_list_h = load adjacent list for high-level

function path_find(S, E)

 // path finding with the map area

 if dist(S,E) < minimum travel-distance criteria

 adj_list_se = load adjacency list from maps near S and E

 while Dijkstra(adj_list_se,S,E)=FALSE // if path finding fail

 delete adj_list_se // extend the map area

 adj_list_se = load adjacency list extending the map area

 end while

 result_path = Dijkstra(adj_list_se, S, E)

 // path finding with hierarchical topology

 else

 adj_list_s = load adjacency list from maps near S

 adj_list_e = load adjacency list from maps near E

 S’ = high-level vertex near S

 E’ = high-level vertex near E

 // path finding near start point

 while Dijkstra(adj_list_s, S, S’) = FALSE

 delete adj_list_s

 adj_list_s = load adjacency list extending the map area

 end while

 // path finding near finish point

 while Dijkstra(adj_list_e, E, E’) = FALSE

 delete adj_list_e

 adj_list_e = load adjacency list extending the map area

 end while

 // high-level path finding

 Dijkstra(adj_list_h, S’, E’)

 result_path = Dijkstra(adj_list_s, S, S’) +

 Dijkstra(adj_list_e, E, E’) +

 Dijkstra(adj_list_s, S’, E’)

 end if

end path_find

Fig. 7. Pesudo code for path computation

Fig. 6. Design of hierarchical graph model

Fig. 5. Design of plain graph model

Fig. 4. Path finding by HIPLA

cannot always guarantee shortest path. To

overcome the shortage, we improved the method

which consist new graph through concatenate all

sub-graph, which included in configuration of new

graph lie from MBR (Minimum Boundary

Rectangle) of origin and destination pair node, used

in path finding as shown in Figure 5.

 Let G=(V,E) be a graph. Then in case of ∈,
edge said to be . Therefore, configuration of

graph described above is defined as .

 . In the process of merging the

sub-graphs, index of vertices and edges are also

merged and composed in the new graph. That is,

vertex are represented by . In

the new graph, connected edge between boundaries

of sub-graphs is composed. Let d1 is a vertex of G1

and v1 is a vertex of G2, if d1 and v1 are the same

node as well as are connected with each other,

edge(d1,v1) is newly added. That is, in the process

of configuring GN, all pairs of boundary edges

⊂ are satisfied. The method of configuring

new graph described above is utilized in path find-

ing at a short distance as shown in Figure 6.

 In the hierarchical graph, let graph in higher level

is called to be , is defined. And

each edge is represented by

 . In the hier-

archical graph, in order to correspond from lower

level to higher level, s’ and d’ should be determined,

which is vertex of higher level in G1 and G2.

 ′ ′′ ′

3.2 Design of dynamic scenarios

 This section designs the path finding function with

A Dynamic Path Computation Database Model in Mobile LBS System 49

(a) Path computation at close distance with

plain graph model

(b) Path computation at a long distance with

hierarchical graph model

Fig. 8. Heuristic route model combined plain with hierarchical graph

the data model for road network designed earlier.

The topological structure for nodes and links is

stored as an adjacent list (graph data structure) for

path finding. At this time, the adjacent list for high-

er-level nodes and links is constructed in advance

as soon as the program is initiated. The reason to

do so is to increase the efficiency of finding, which

may become low since data of higher-level topo-

logical structure is so few. We applied Dijkstra

Algorithm for path computation.

 As shown in Figure 7 above, the beginning of the

Pesudo code is to configure adjacent list for higher

level. Path finding is divided into search for sub

graph based on parcel (map) and for hierarchical

graph used in higher level network. In order to apply

appropriate method among two types of route plan-

ning based on distance, procedure checks out wheth-

er the distance between origin S and destination E

is less than the minimum travel-distance criteria

(we assume 10km based on the size of a parcel).

 ▪In case of route planning at short distance as

shown in Figure 8(a), all parcels across rectangular

area including origin and destination paris are con-

structed as an adjacent list and path finding per-

forms by using Dijkstra algorithm. Because there is

no road which is able to connect origin and destina-

tion pairs, if it is not possible to compute path find-

ing, re-search is performed with areas expanded

through adding neighbor 4 parcels.

 ▪When it comes to hierarchical path computa-

tion, there are a total of 3 adjacent lists

 such as near origin, near destination, and high

level. Then, find node S', E' which are the closest

origin and destination pairs and find individual opti-

mum path using Dijkstra‘s algorithm. Lastly, con-

catenate the final path obtained above in all as

shown in Figure 8(b).

 Unlike the forward path computation with a map

unit (parcel or grid), one of hierarchical graph model

carries out the bidirectional path finding from a

lower-level to a specified higher-level. At this time,

higher-level roads are used for the long-distance

finding so that it makes more practical and efficient

path finding could be done.

4. Case Study

4.1 Implementation of prototype system

 We developed prototype system to evaluate per-

formance of the designed network model scheme

and graph algorithm for path computation. The util-

ity of path finding in the embedded DBMS environ-

ment would be liked to be demonstrated through an

implementation of the path finding system. The im-

plementation of the embedded spatial database in

this study was designed by extending the SQLite

DBMS. Data for the Jeju island was used, which

was background, finding POI, and road network da-

ta comprising of six levels. The used test terminal

was the HP iPAQ hx2400 (CPU 520 Mhz, 64 Mb

RAM), which used 2G flash memory.

 Implemented prototype system for vehicle navi-

gation consists of three basic modules: main map

display, path finding, and route guidance. Depending

on distance between origin and destination paris,

route planning module either the plain graph model

50 한국공간정보학회지：제19권 제3호 (2011. 06)

Path Computation Process time (ms)

SL-DL

Configuration of
adjacent list

525

Path finding 8

total 533

Table 1. Path computation at close distance

 with plain graph model：1,024m

Path Computation Process time (ms)

SL-DL'

Configuration of
adjacent list

452

Path finding 11

SL'-DL

Configuration of
adjacent list

401

Path finding 29

SH' -DH' Path finding 176

total 1,069

Table 2. Path computation at close distance

 with hierarchical graph model：1,229m

Fig. 9. The UI of Simulator : display of

path computation and route guidance

or the hierarchical graph model. In addition, to dis-

play the result on the screen, search area is set up

based on the current position and afterward re-

trieves route and its background objects in accord-

ance with determined display order as shown

Figure 9. Map display module, which consists of 6

levels, visualizes background data on the screen

such as river, administrative boundary, railroad, fa-

cilities and annotation of place names etc.

4.2 Analysis on experimental evaluation

 The study area for performance evaluation is Jeju

island where consists of 42 parcels. The number of

node, link for path finding is respectively 38,064 and

50,283. In order to verify the efficiency of suggested

scheme and query processing, we evaluated algo-

rithm in terms of computation time and accuracy.

lastly, we compared the result of performance for

short distance. Table1 and Table 2 show computa-

tion time on path between hierarchical and plain

graph algorithm in small-scale network.

 In small-scale network, plain graph algorithm is

more appropriate rather than hierarchical algorithm

in terms of computation time and accuracy. As

shown in Figure 10, hierarchical algorithm forced

the route to circle around in order to pass through

the national highways which consist of the higher

level node.

Fig. 10. Display result of Table 1(left)

and Table 2(right)

 Secondly, we compared performance comparison

of the path computation algorithm in long-distance

areas. Table 3 shows variation of computation time

on path between hierarchical and plain graph algo-

rithm in large-scale network as we gradually in-

crease travel distance between two node.

 The time found by the plain graph algorithm is

considerable longer than the optimal hierarchical

route. That's because the finding with hierarchical

road network constructs two maps including the

origin node and the destination node and the high-

er-level nodes, links into the adjacent list graph, the

time to construct the adjacent list graph becomes

shorter. In addition, it passes through the high-

A Dynamic Path Computation Database Model in Mobile LBS System 51

Comparison of Computation Time

ID
Plain Algorithm Hierarchical Algorithm

Distance
(m)

Time
(ms)

Distance
(m)

Time
(ms)

1 5,591 450 5,834 1,025

2 10,298 2,015 10,298 1,070

3 15,599 4,633 15,599 1,226

4 40,404 4,075 39,879 1,730

5 45,534 4,581 45,645 1,712

6 50,155 5,297 50,035 1,286

7 54,300 5,260 53,775 1,142

8 60,466 7,938 59,941 1,633

9 64,632 8,479 64,107 988

10 70,998 16,701 77,224 1,603

Table 3. The comparison on evaluation result

er-rank road with faster average speed in a long

drive so that it provides the optimized path.

Therefore, the path finding with the hierarchical

road network has a good quality of paths and a very

fast calculation speed in a long distance.

 Consequently, the designed path finding with hi-

erarchical graph model reduces the number of nodes

used for finding and improves the efficiency of

memory and finding by applying the hierarchical

road level. On the other hand, it is clear that plain

graph algorithm is no suitable for cases if the origin

and destination pairs are far away.

5. Conclusion

 The aim of this study is to develop an efficient

graph-based geodata model for topological network

data and to support dynamic path computation al-

gorithm based on heuristic approach in mobile LBS

system. To make it come true, we firstly review the

KIWI, which is the existing advanced in-vehicle

application, to grasp its configuration and require-

ments for developing data scheme. Next, we de-

signed topological model of hierarchy and storage

model as a logical model as well as physical table

scheme such as path finding table, path indicating

table, and path guidance table etc. Then, we de-

signed dynamic path computation algorithm based

on heuristic approach based on empirical fact using

suggested physical data model and designed short-

est graph models which is able to determine plain

graph model or hierarchical graph model in accord-

ance with the minimum travel-distance criteria.

Then, We developed prototype system to evaluate

performance of the designed network model scheme

and graph algorithm for path computation.

 In a case study, we found out that in small-scale

network, plain graph algorithm is more appropriate

rather than hierarchical algorithm in terms of com-

putation time and accuracy. On the contrary, in

long-distance areas. The computation time on path

found by the plain graph algorithm is considerable

longer than the optimal hierarchical route. That is,

the path finding with the hierarchical road network

has a good quality of paths and a very fast calcu-

lation speed in a long distance. Finally, we can come

to the conclusion that the designed path computa-

tion algorithm with hierarchical graph model re-

duced the number of nodes used for finding and im-

proved the efficiency of memory and finding by ap-

plying the hierarchical road level.

 This study is expected to play a crucial role in

database model for various application services in

mobile devices using location-based services. A

study on a synchronization method to process the

real-time data is required based on this study in the

future.

References

[1] E. Basiaensen, 2003 “ActMAP: real-time map

updates for advanced in-vehicle applica-tions,”

Proceedings, 10th World Congress on ITS,

52 한국공간정보학회지：제19권 제3호 (2011. 06)

Madrid, November.

[2] M. Breunig and W. Baer, 2004, “Database support

for mobile route planning systems”, Computers,

Environment and Urban Systems, Vol 28,No

2004, pp. 595-610.

[3] T. Brinkhoff, 1999, “Requirements of traffic tele-

matics to spatial databases” In Lecture Notes in

Computer Science: Proceedings of the 6th

International Symposium on Large Spatial

Databases, Hong Kong, China, Vol 1651, pp. 365

–369.

[4] I. Chabini and S. Lan, 2002, “Adaptations of the

A
∗. algorithm for the computation of fastest

paths in deterministic discrete-time dynamic

networks,” IEEE Trans. Intell. Transp. Syst., Vol.

3, No. 1, pp. 60-74.

[5] E. W. Dijkstra. 1959, “A note on two problems

in connexion with graphs,” Vol.1, No.1, pp 269-271.

[6] H. FUJIMOTO, 2001, “World Wide Vehicle

Navigation System Using KIWI Format ”, デンソ.

テクニカルレビュ.　Vol.６　No.1.

[7] J. A. Fernandez-Madrigal and J. Gonzalez, 2002,

“Multihierarchical graph search,” IEEE Trans.

Pattern Anal. Mach. Intell., Vol.24, No.1, pp

103-113.

[8] T. Hamada, 2002, Kiwi Format and Telematics.

[9] Y. J. Joo and S. H. Park, 2006, “Design and

Implementation of Map Databases for Telematics

and Car Navigation Systems using an Embedded

DBMS,” The Journal of GIS Association of

Korea, Vol 14, No. 4.

[10] Y. J. Joo and S. H. Kim, 2011, “A New Route

Guidance Method Considering Pedestrian Level

of Service using Multi-Criteria Decision Making

Technique,” Journal of Korea Spatial Information

Society, Vol. 19, No.1, pp. 91-99.

[11] G. G. Moon , Y. J. Joo, S. H. Park, 2011, “Lossless

Vector Data Compression Using the Hybrid

Approach of BytePacking and Lempel-Ziv in

Embedded DBMS,” Journal of Korea Spatial

Information Society, Vol. 19, No.1 ,pp.115-124.

[12] Open Geospatial Consotium, Inc., 2005, Simple

Features - SQL 1.1

[13] H. J. Sim, J. J. Kim, I. S. Shin and K. J. Han,

2008, “Embedded spatio-temporal DBMS for mo-

bile device”, Spring Conference on GIS

Association of Korea, pp. 59-66.

[14] Q. Song and X. F. Wang, 2011, “Efficient Routing

on Large Road Networks Using Hierarchical

Communities,” IEEE Trans. intel. Transp. Syst.,

Vol. 12, No. 1.

[15] R. Rajagopalan , K. G. Mehrotra, C. K. Mohan

and P. K. Varshney, 2008, “Hierarchical path

computation approach for large graphs," IEEE

Trans. Aerosp. Electron. Syst., Vol. 44, No. 2, pp

427-440.

[16] A. Zipf and J. Strob, 2002, Geoinformation mobil.

Heidelberg, Germany: Herbert Wichmann, pp. 230.

Manuscript received：2011.05.03

Revised：2011.06.15

Accepted：2011.06.29

Yong Jin Joo

2001 Dept. of GeoInformatic Engi-

neering, Inha University (B.S.)

2003 Dept. of GeoInformatic Engin-

eering, Inha University(M.S.)

2009 Dept. of GeoInformatic

Engineering, Inha University (Ph.D.)

2009～Present Research Professor, Institute of Urban

Science, University of Seoul

Research Expertise：Spatial DBMS, LBS & Em-

bedded System. Spatial Reasoning & Ontology, Urban

Growth Simulation Model

