DOI QR코드

DOI QR Code

Effect of RGD peptide coating of implant titanium surface on human mesenchymal stem cell response

양극산화 티타늄 표면에 서로 다른 RGD 펩타이드 코팅 방법이 인간간엽줄기세포 반응에 미치는 영향

  • Kim, Min-Su (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jeong, Chang-Mo (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jeon, Young-Chan (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Ryu, Jae-Jun (Department of Prosthodontics, Ansan Hospital, Korea University) ;
  • Huh, Jung-Bo (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Yun, Mi-Jung (Department of Prosthodontics, School of Dentistry, Pusan National University)
  • 김민수 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 정창모 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 전영찬 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 류재준 (고려대학교 안산병원 치과보철과) ;
  • 허중보 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 윤미정 (부산대학교 치의학전문대학원 치과보철학교실)
  • Received : 2011.06.25
  • Accepted : 2011.07.05
  • Published : 2011.07.29

Abstract

Purpose: The aim of this in vitro study was to estimate surface characteristic after peptide coating and investigate biological response of human mesenchymal stem cell to anodized titanium discs coated with RGD peptide by physical adhesion and chemical fixation. Materials and methods: Fluorescence isothiocyanate (FITC) modified RGD-peptide was coated on the anodized titanium discs (diameter 12 mm, height 3 mm) using two methods. One was physical adhesion method and the other was chemical fixation method. Physical adhesion was performed by dip and dry procedure, chemical fixation was performed by covalent bond via silanization. In this study, human mesenchymal stem cell was used for experiments. The experiments consisted of surface characteristic evaluation after peptide coating, analysis about cell adhesion, proliferation, differentiation, and mineralization. Obtained data are statistically treated using Kruskal-Wallis test and Bonferroni test was performed as post hoc test (P=.05). Results: The evaluation of FE-SEM images revealed no diffenrence at micro-surfaces between each groups. Total coating dose was higher at physical adhesion experimental group than at chemical fixation experimental group. In cell adhesion and proliferation, RGD peptide coating did not show a statistical significance compared with control group (P>.05). In cell differentiation and mineralization, physical adhesion method displayed significantly increased levels compared with control group and chemical fixation method (P<.05). Conclusion: RGD peptide coating seems to enhance osseointegration by effects on the response of human mesenchymal stem cell. Especially physical adhesion method showed more effective than chemical fixation method on response of human mesenchymal stem cell.

연구 목적: 양극 산화 티타늄 임플란트의 표면에RGD펩타이드를 화학적 고정 및 물리적 흡착 방법을 통해 코팅하고, 이러한 코팅방법에 따른 표면 변화와 펩타이드의 코팅여부, 인간간엽줄기세포 배양시의 부착, 증식, 분화를 비교하여, 펩타이드를 임플란트 표면에 코팅시키는 방법과 세포의 반응 간의 관계를 분석하고자 하였다. 연구 재료 및 방법: 직경 12.0 mm, 두께 3.0 mm의 양극 산화 티타늄 디스크 상에, 대조군은 아무런 코팅을 시행하지 않았으며, 실험군은 표면에 형광 물질이 고정되어 있는 RGD펩타이드를 화학적 고정 방법과 물리적 흡착 방법으로 코팅시켰다. 펩타이드 코팅 이후의 표면 변화를 살펴보기 위해 주사전자현미경관찰, 형광현미경 관찰, X-ray Photoelectron Spectrometry (XPS) 분석을 시행하였다. 세포 부착 정도와 형태의 변화 및 증식 정도를 평가하였다. 분화의 정도를 살펴보기 위해, 정량중합효소연쇄반응, alkaline phosphatase activity assay, alizarin red assay를 이용하여 각각 분석하였다. 통계 분석은 SPSS (ver. 17.0, SPSS, IL, USA)프로그램을 이용하여 Kruskal-Wallis test로 유의성을 검증하였고, 사후 검정은 Bonferroni test를 시행하였다(P=.05). 결과: 형광 현미경, XPS 분석 결과, 두 가지 코팅 방법에서 모두 펩타이드의 코팅이 확인되었으며, 물리적 흡착 방법이 화학적 고정 방법보다 더 많은 양의 펩타이드를 코팅시킬 수 있었다. 코팅 방법의 차이에 따른 세포의 초기 부착 정도와 형태 변화, 증식의 정도에는 유의할만한 차이가 나타나지 않았다(P>.05). 세포의 분화 정도는 물리적 흡착 실험군에서 대조군과 화학적 흡착 실험군에서보다 collagen type I과 osteocalcin, osteopontin의 양이 증가되었으며, ALP activity가 유의하게 증가되었다(P<.05). 결론: RGD-펩타이드를 양극 산화 임플란트에 코팅함으로써 인간간엽줄기세포의 반응에 영향을 주어 임플란트의 골유착을 증진시킬 수 있는 가능성을 확인하였으며, 특히 많은 양의 펩타이드를 코팅할 수 있는 물리적 흡착 방법이 화학적 고정 방법보다 인간간엽줄기세포 반응에 더 효과적임을 알 수 있었다.

Keywords

References

  1. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-54. https://doi.org/10.1016/j.dental.2006.06.025
  2. Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 2009;20:185-206. https://doi.org/10.1111/j.1600-0501.2009.01777.x
  3. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials 1999;20:2311-21. https://doi.org/10.1016/S0142-9612(99)00160-X
  4. Dettin M, Conconi MT, Gambaretto R, Bagno A, Di Bello C, Menti AM, Grandi C, Parnigotto PP. Effect of synthetic peptides on osteoblast adhesion. Biomaterials 2005;26:4507-15. https://doi.org/10.1016/j.biomaterials.2004.11.023
  5. Kim KH, Kwon TY, Kim SY, Kang IK, Kim S, Yang Y, Ong JL. Preparation and characterization of anodized titanium surfaces and their effect on osteoblast responses. J Oral Implantol 2006;32:8-13. https://doi.org/10.1563/741.1
  6. Balasundaram G, Yao C, Webster TJ. TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. J Biomed Mater Res A 2008;84:447-53.
  7. Kataoka Y, Tamaki Y, Miyazaki T. Synergistric responses of superficail chemistry and micro topography of titanium created by wire-type electric discharge machining. Biomed Mater Eng 2011;21113-21.
  8. Sato M, Webster TJ. Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications. Expert Rev Med Devices 2004;1:105-14. https://doi.org/10.1586/17434440.1.1.105
  9. Dard M, Sewing A, Meyer J, Verrier S, Roessler S, Scharnweber D. Tools for tissue engineering of mineralized oral structures. Clin Oral Investig 2000;4:126-9. https://doi.org/10.1007/s007840050128
  10. Ruoslahti E, Pierschbacher MD. Arg-Gly-Asp: a versatile cell recognition signal. Cell 1986;44:517-8. https://doi.org/10.1016/0092-8674(86)90259-X
  11. Xiao SJ, Textor M, Spencer ND. Covalent attachment of cell-adhesive, (Arg-Gly-Asp)-containing peptides to titanium surfaces. Langmuir 1998;14:5507-16. https://doi.org/10.1021/la980257z
  12. Massia SP, Hubbell JA. Covalently attached GRGD on polymer surfaces promotes biospecific adhesion of mammalian cells. Ann N Y Acad Sci 1990;589:261-70. https://doi.org/10.1111/j.1749-6632.1990.tb24251.x
  13. Rezania A, Johnson R, Lefkow AR, Healy KE. Bioactivation of metal oxide surfaces. 1. Surface characterization and cell response. Langmuir 1999;15:6931-9. https://doi.org/10.1021/la990024n
  14. Grzesik WJ, Robey PG. Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J Bone Miner Res 1994;9:487-96.
  15. Schaffner P, Meyer J, Dard M, Wenz R, Nies B, Verrier S, Kessler H, Kantlehner M. Induced tissue integration of bone implants by coating with bone selective RGD-peptides in vitro and in vivo studies. J Mater Sci Mater Med 1999;10:837-9. https://doi.org/10.1023/A:1008904513304
  16. Kantlehner M, Schaffner P, Finsinger D, Meyer J, Jonczyk A, Diefenbach B, Nies B, Holzemann G, Goodman SL, Kessler H. Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. Chembiochem 2000;1:107-14. https://doi.org/10.1002/1439-7633(20000818)1:2<107::AID-CBIC107>3.0.CO;2-4
  17. Piattelli A, Scarano A, Corigliano M, Piattelli M. Effects of alkaline phosphatase on bone healing around plasma-sprayed titanium implants: a pilot study in rabbits. Biomaterials 1996;17:1443-9. https://doi.org/10.1016/0142-9612(96)87288-7
  18. Lind M, Overgaard S, Ongpipattanakul B, Nguyen T, Bunger C, S􀝚balle K. Transforming growth factor-beta 1 stimulates bone ongrowth to weight-loaded tricalcium phosphate coated implants: an experimental study in dogs. J Bone Joint Surg Br 1996;78:377-82.
  19. Liu SQ, Ito Y, Imanishi Y. Cell growth on immobilized cell growth factor: 5. Interaction of immobilized transferrin with fibroblast cells. Int J Biol Macromol 1993;15:221-6. https://doi.org/10.1016/0141-8130(93)90041-J
  20. Kilpadi KL, Sawyer AA, Prince CW, Chang PL, Bellis SL. Primary human marrow stromal cells and Saos-2 osteosarcoma cells use different mechanisms to adhere to hydroxylapatite. J Biomed Mater Res A 2004;68:273-85.
  21. Rezania A, Healy KE. The effect of peptide surface density on mineralization of a matrix deposited by osteogenic cells. J Biomed Mater Res 2000;52:595-600. https://doi.org/10.1002/1097-4636(20001215)52:4<595::AID-JBM3>3.0.CO;2-3
  22. Zreiqat H, Akin FA, Howlett CR, Markovic B, Haynes D, Lateef S, Hanley L. Differentiation of human bone-derived cells grown on GRGDSP-peptide bound titanium surfaces. J Biomed Mater Res A 2003;64:105-13.
  23. Huang H, Zhao Y, Liu Z, Zhang Y, Zhang H, Fu T, Ma X. Enhanced osteoblast functions on RGD immobilized surface. J Oral Implantol 2003;29:73-9. https://doi.org/10.1563/1548-1336(2003)029<0073:EOFORI>2.3.CO;2
  24. Yang F, Williams CG, Wang DA, Lee H, Manson PN, Elisseeff J. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 2005;26:5991-8. https://doi.org/10.1016/j.biomaterials.2005.03.018
  25. Sawyer AA, Hennessy KM, Bellis SL. Regulation of mesenchymal stem cell attachment and spreading on hydroxyapatite by RGD peptides and adsorbed serum proteins. Biomaterials 2005;26:1467-75. https://doi.org/10.1016/j.biomaterials.2004.05.008