DOI QR코드

DOI QR Code

Trends of Technologies for High Performance Polymer Barriers against Radiation

고성능 방사선 고분자 차단막 기술동향

  • Lee, Gi-Bbeum (Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Park, Sung-Eun (Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Kim, In-Woo (Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Jeong, Kwang-Un (Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Lee, Hong-Ki (Fuel Cell Regional Innovation Center, Woosuk University) ;
  • Nah, Chang-Woon (Department of Polymer-Nano Science and Technology, Chonbuk National University)
  • 이기쁨 (전북대학교 고분자나노공학과) ;
  • 박성은 (전북대학교 고분자나노공학과) ;
  • 김인우 (전북대학교 고분자나노공학과) ;
  • 정광운 (전북대학교 고분자나노공학과) ;
  • 이홍기 (우석대학교 수소연료전지 부품 및 응용기술 지역혁신센터) ;
  • 나창운 (전북대학교 고분자나노공학과)
  • Received : 2011.04.12
  • Accepted : 2011.04.27
  • Published : 2011.06.30

Abstract

The conventional radiation barriers may show some disadvantages such as heavy weight and possibility of poisoning human bodies because they are composed of lead plates or resin plates containing large amounts of lead powders. Another disadvantage may be direct penetration of radiation through small pin holes. In this article, technologies of multi-layered polymer barriers against radiation, which has been extensively focused recently, will be introduced. A new concept of radiation protection as well as improving endurance with employing nano-layered inorganic particles is introduced.

종래의 방사선 차단막은 납판이나 납 분말을 과량 배합하여 사용되고 있기 때문에 무거울 뿐만 아니라 인체중독의 위험성이 있다. 또한 작은 핀홀이 존재할 경우 방사선의 직접 투과 위험성이 있는 단점이 있다. 본 특집에서는 최근 선진국을 중심으로 연구가 활발한 다층구조의 고분자 방사선 차단막 기술에 대해 특허분석과 문헌고찰을 중심으로 소개한다. 특히 판상형 나노무기입자를 이용한 방사선 차단 및 내구성 향상에 대한 새로운 개념을 소개한다.

Keywords

References

  1. J. M. G. Laranjeira, H. J. Khoury, W. M. de Azevedo, E. F. da Silva Junior, and E. A. de Vasconcelos, Radiation Protection Dosimetry, 101, 88 (2002).
  2. V. I. Kirko, Journal of Materials Processing Technology, 181, 222 (2007). https://doi.org/10.1016/j.jmatprotec.2006.03.083
  3. D. Schmidt, D. Shah, and E. P. Giannelis, Current Opinion in Solid State and Materials Science, 6, 205 (2002). https://doi.org/10.1016/S1359-0286(02)00049-9
  4. M. Alexandre and P. Dubois, Materials Science and Engineering, 28, 1 (2000). https://doi.org/10.1016/S0927-796X(00)00012-7
  5. S. S. Ray and M. Okamoto, Progress in Polymer Science, 28, 1539 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002
  6. T. Wang, M. Wang, Z. Zhang, X. Ge, and Y. Fang, Materials Letters, 61, 3723 (2007). https://doi.org/10.1016/j.matlet.2006.12.023
  7. D. Shah, P. Maiti, D. D. Jiang, C. A. Batt, and E. P. Giannelis, Advanced Materials, 17, 525 (2005). https://doi.org/10.1002/adma.200400984
  8. S. G. Burnay, Nuclear Instrument and Methods in Physics Research B, 185, 4 (2001). https://doi.org/10.1016/S0168-583X(01)00757-1
  9. H. Lu and S. Nutt, Macromolecules, 36, 4010 (2003). https://doi.org/10.1021/ma034049b
  10. Y. Li and H. Ishida, Chemistry of Materials, 14, 1398 (2002). https://doi.org/10.1021/cm0103747
  11. X. Fan, C. Xia, T. Fulghum, M. K. Park, J. Locklin, and R. C. Advincula, Langmuir, 19, 916 (2003). https://doi.org/10.1021/la026039u
  12. S. E. Gwaily, H. H. Hassan, M. M. Badawy, and M. Madani, Polymer Composites, 23, 1068 (2002). https://doi.org/10.1002/pc.10502
  13. A. B. Morgan and J. D. Harris, Polymer, 45, 8695 (2004). https://doi.org/10.1016/j.polymer.2004.10.067
  14. 김건보, "방사선차폐체 및 그 제조방법", KR-A-10-2004-0048589 (2004).
  15. 김영창, "제동방사선 차폐 구조물", KR-Y1-20-0410136 (2006).