Effects of Material Modulus on Fracture Toughness of Human Enamel, a Natural Biocomposite

  • Received : 2011.04.21
  • Accepted : 2011.06.03
  • Published : 2011.06.30

Abstract

The enamel, the upper layer of a tooth has remarkable capability of bearing severe loading on the tooth. The fracture behavior is important to understand the mechanism of load bearing and it could be very useful for developing new materials. Non-destructive evaluation of such materials will also benefit from this knowledge. The graded microstructures of enamel were modeled by finite element analysis software and the J-integrals and the stress intensity factors were evaluated as the fracture parameters. The results show that these parameters are location dependent. Those values increase when measured in the direction of dentine enamel junction. This finding matched well with experiments and implies many useful understanding of biomaterials and applications to new materials.

Keywords

References

  1. A. Lussi, "Dental erosion: from diagnosis to therapy," $1^{st}$Edition, Basscl:Karger (2006)
  2. H. Gray, L. H. Bannister, M. M. Berry and P. L. Williams, "P. L. Gray's Anatomy: The anatomical basis of medicine and surgery," 38th Edition, Churchill Livingstone (1995)
  3. P. D. Frazer, "Adult human enamel: an electron microscopic study of crystallite size and morphology," Journal of Ultrastructure Res, Vol. 22, pp. 1-11 (1986)
  4. S. Habelitz, S. J. Marshall, G. W. Marshall and M. Balooch, "Mechanical properties of human dental enamel on nanometer scale," Archive of Oral Biology, Vol. 46, pp. 173-183 (2001) https://doi.org/10.1016/S0003-9969(00)00089-3
  5. M. M. Barak, S. Geiger, N. L. T. Chattah, R. Shahar and S. Weiner, "Enamel dictates whole tooth deformation: A finite element model study validated by a metrology method," Journal of structural biology, Vol. 168, pp. 511-520 (2009) https://doi.org/10.1016/j.jsb.2009.07.019
  6. J. Zhou and L. L. Hsiung, "Biomolecular origin of the rate dependent deformation of prismatic enamel," Applied Physics Letters, Vol. 89, pp. 1-3 (2006)
  7. L. H. He and M. V. Swain, "Enamel- a functionally graded natural coating," Journal of Dentistry, Vol. 37, pp. 596-603 (2009) https://doi.org/10.1016/j.jdent.2009.03.019
  8. H. Fong, M. Sarikya, S. N. White and M. L. Snead, "Nano-mechanical properties profiles across dentine enamel junction of human incisor teeth," Material Science and Engineering, Vol. 7, pp. 119-128 (2000) https://doi.org/10.1016/S0928-4931(99)00133-2
  9. D. Bajaj, A. Nazari, N. Eidelman and D. D. Arola, "A comparison of fatigue crack growth in human enamel and hydroxy patite," Biomaterials Vol. 29, pp. 4847-4854 (2008) https://doi.org/10.1016/j.biomaterials.2008.08.019
  10. D. Bajaj and D. Arola, "Role of prism decussation on fatigue crack growth and fracture of human enamel," Acta Biomaterialia, Vol. 5, pp. 3045-3056 (2009) https://doi.org/10.1016/j.actbio.2009.04.013
  11. D. Bajaj and D. Arola, "On the R-curve behavior of human tooth enamel," Biomaterials, Vol. 30, pp. 4037-4046 (2009) https://doi.org/10.1016/j.biomaterials.2009.04.017
  12. S. F. Ang, E. L., Bortel, M. V. Swain, A. Klocke and G. A. Schneider, "Size dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scale," Biomaterials, Vol. 31, pp. 1955-1963 (2010) https://doi.org/10.1016/j.biomaterials.2009.11.045
  13. J. L. Cuy, A. B. Manna, K. J. Livi, M. F. Teaford and T. P. Weihs, "Nanoindentation mapping of the mechanical properties of human molar tooth enamel" Archives of Oral Biology, Vol. 47, pp. 281-291 (2002) https://doi.org/10.1016/S0003-9969(02)00006-7
  14. L. Hong and M. V. Swain, "Understanding the mechanical behavior of human enamel from its structural and compositional characteristics," Journal of the Mechanical behavior of Biomedical Materials, Vol. 1, pp. 18-29 (2008) https://doi.org/10.1016/j.jmbbm.2007.05.001
  15. Z. H. Xie, M. V. Swain, G. Swadener, P. Munroe and M. Hoffman, "Effect of microstructure upon elastic behavior of human tooth enamel," Journal of Biomechanics, Vol. 42, pp. 1075-1080 (2009) https://doi.org/10.1016/j.jbiomech.2009.02.004
  16. S. K. Padmanabhan, A. Balkrishnan, M. C. Chu, T. N. Kim and S. J. Cho, "Micro indentation fracture behavior of human enamel," Dental Materials, Vol. 26, pp. 100-104 (2010) https://doi.org/10.1016/j.dental.2009.07.015
  17. H. Chai, J. J. W. Lee, P. J. Constantino, P. W. Lucas and B. R. Lawn, "Remarkable resilience of teeth," PNAS, Vol. 106, No. 18, pp. 7289-7293 (2009) https://doi.org/10.1073/pnas.0902466106
  18. J. J. W. Lee, J. Y. Kwon, H. Chai, P. W. Lucas, V. P. Thompson and B. R. Lawn, "Fracture modes in human teeth," Journal of Dental Research, Vol. 88, No.3, pp. 224-228 (2009) https://doi.org/10.1177/0022034508330055
  19. R. Hassan, A. A. Caputo and R. F. Bunshan, "Fracture toughness of human enamel," Journal of Dental Research, Vol. 60, No.4, pp. 820-827 (1981) https://doi.org/10.1177/00220345810600040901
  20. S. Bechtle, S. Habelitz, A. Klocke, T. Fett and G. A. Schneider, "The fracture behavior of dental enamel," Biomaterials, Vol. 31, pp. 375-384 (2010) https://doi.org/10.1016/j.biomaterials.2009.09.050
  21. S. Bechtle, S. F. Ang and G. A. Schneider, "On the mechanical properties of hierarchically structured biological materials," Biomaterials, Vol. 31, pp. 6378-6385 (2010) https://doi.org/10.1016/j.biomaterials.2010.05.044
  22. S. Bechtle, T. Fett, G. Rizzi, S. Habelitz and G. A. Schneider, "Mixed mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentine and enamel," Journal of the Mechanical Behavior of Biomedical Materials, Vol. 3, pp. 303-312 (2010) https://doi.org/10.1016/j.jmbbm.2009.12.004
  23. J. M. Melenk and L. Babuska, "The partition of unity finite element method: basic theory and applications," Computer Methods in Applied Mechanical Engineering, Vol. 39, pp. 289-314 (1996)
  24. T. Belytschko and T. Black, "Elastic crack growth in finite elements with minimal remeshing" International Journal of Numerical Methods in Engineering, Vol. 45, No.5, pp. 601-620 (1999) https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  25. N. Sukumar, N. Moess, T. Belytschko and B. Moran, "Extended finite element method for three dimensional crack modeling," International Journal of Numerical Methods in Engineering, Vol. 48, No. 11, pp. 1549-1570 (2000) https://doi.org/10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
  26. M. Jirasek, "Comparative study on finite elements with embedded discontinuities," Computer Methods in Applied Mechanical Engineering, Vol. 188, No.1, pp. 307-330 (2000) https://doi.org/10.1016/S0045-7825(99)00154-1
  27. M. Stolarska, D. H. Chopp, N. Moess and T. Belytschko, "Modeling crack growth by level sets in the extended finite element method," International Journal of Numerical Methods in Engineering, Vol. 51, pp. 943-960 (2001) https://doi.org/10.1002/nme.201
  28. T. Ventura, E. Budyn and T. Belytschko, "Vector level sets for description of the propagating cracks in finite elements," International Journal for Numerical Methods in Engineering, Vol. 58, pp. 1571-1592 (2003) https://doi.org/10.1002/nme.829
  29. X. Y. Liu, Q. Z. Xiao and B. L. Karihaloo, "XFEM for direct evaluation of mixed modes SIFs in homogeneous and bi-materials," International Journal of Numerical Methods in Engineering, Vol. 59, pp. 1103-1118 (2004) https://doi.org/10.1002/nme.906
  30. K. Shibanuma and T. Utsunomiya, "Evaluation on reproduction of priori knowledge in XFEM," Finite Elements in Analysis and Design, Vol. 47, pp. 424-433 (2011) https://doi.org/10.1016/j.finel.2010.11.007
  31. M. L. Luchi and S. Rizzuti, "Boundary elements for three dimensional crack analysis," International Journal of Numerical Methods in Engineering, Vol. 24, pp. 2253-2271 (1987) https://doi.org/10.1002/nme.1620241203
  32. ABAQUS Manual, V. 6.9 (2010)