DOI QR코드

DOI QR Code

Material and Heat Balances of Bioethanol Production Process by Concentrated Acid Saccharification Process from Lignocellulosic Biomass

목질계 Biomass로부터 강산 당화 공정에 의한 Bioethanol 생산 공정의 물질 및 열수지

  • Kim, Hee-Young (Department of Chemical Engineering, Dongguk University) ;
  • Lee, Eui-Soo (Department of Chemical Engineering, Dongguk University) ;
  • Kim, Won-Seok (Clean Energy Center, Korea Institute of Science and Technology) ;
  • Suh, Dong-Jin (Clean Energy Center, Korea Institute of Science and Technology) ;
  • Ahn, Byoung-Sung (Clean Energy Center, Korea Institute of Science and Technology)
  • 김희영 (동국대학교 화학공학과) ;
  • 이의수 (동국대학교 화학공학과) ;
  • 김원석 (한국과학기술연구원 청정에너지센터) ;
  • 서동진 (한국과학기술연구원 청정에너지센터) ;
  • 안병성 (한국과학기술연구원 청정에너지센터)
  • Received : 2011.04.13
  • Accepted : 2011.05.31
  • Published : 2011.06.30

Abstract

The process for bioethanol production from lignocellulosic biomass was studied through process simulation using PRO/II. Process integration was conducted with concentrated acid pretreatment, hydrolysis process, SMB (simulated moving bed chromatography) process and pervaporation process. Energy consumption could be minimized by the heat recovery process. In addition, material and energy balance were calculated based on the results from the simulation and literature data. A net production yield of 4.07 kg-biomass and energy consumption value of 3,572 kcal per 1 kg ethanol were calculated, which is indicating that 26% yield increase and 30% energy saving compared to the bioethanol production process with dilute-acid hydrolysis (SRI report). In order to make it possible, sugar conversion yield of cellulose and hemi-cellulose is to be reached up to 90% and fermentation of xylose needs to be developed. In order to reduce the energy consumption up to 30%, the concentration of acid solution after being separated by 5MB should exceed 20%. If acid/sugar separation by SMB process is to be practical, the bioethanol process designed in this study can be commercially feasible.

본 연구에서는 바이오에탄올 생산을 위한 목질계 바이오매스의 전처리, 당화, 당/산 분리, 발효, 정제에 이르는 전 공정을 조합하고, 상용공정모사기(PRO/II)를 사용하여 공정모사를 수행하였다. 주요 공정으로 강산에 의한 전처리 및 당화, SMB(simulated moving bed)를 사용한 당/산 분리, 그리고 증류 및 투과증발법(Pervaporation)을 이용한 에탄올 탈수 공정을 사용하였다. 열회수 공정을 이용하여 전 공정의 에너지 소비가 최소화 되도록 하고 강산당화공정에 의한 바이오에탄올 생산공정의 물질수지 및 열 수지를 확인하였다. 공정모사 결과, 1 kg의 에탄올을 생산하는데 필요한 바이오매스는 4.07 kg, 소요된 열량은 3,572 kcal로 계산되었다. 기존 묽은 산 당화공정(SRI 자료)에 비해 26%의 수율 증가와 30% 정도의 에너지 절감이 가능할 것으로 예상되었다. 이러한 수율을 얻기 위해서는 강산당화공정에 의한 전처리 및 당화공정에서 셀룰로오스 및 헤미셀룰로오스의 전환율이 90% 정도에 이르러야한다. 또한 5탄당 발효공정이 개발되어야 한다. 효율적 에너지 절감을 위해서는 SMB 공정에서 분리된 황산수용액의 농도가 20% 이상 되어야하며, SMB 공정에 의한 당/산분리 공정이 실용화되어야 강산당화공정에 의한 목절계 바이오에탄올 생산공정이 상용화될 것이다.

Keywords

References

  1. Grous, W. R., Converse, A. O., and Grethlein, H. E., "Effect of Steam Explosion Pretreatment on Pore Size and Enzymatic Hydrolysis of Poplar," Enzyme Microb. Technol., 8 (1986).
  2. Alizadeh, H., Teymouri, F., Gilbert, T. I., and Dale B. E., "Pretreatment of Switchgrass by Ammonia Fiber Explosion (AFEX)," Appl. Biochem. Biotechnol., 121-124, 1133-1141 (2005).
  3. Xie, Y., Phelps, D., Lee, C. H., Sedlak, M.,Ho, N., and Wang, N. H. L., "Comparison of Two Adsorbents for Sugar Recovery from Biomass Hydrolyzate," Ind. Eng. Chem. Res., 44, 6816-6823 (2005). https://doi.org/10.1021/ie049079x
  4. Kumar, P., Barrett, M. D., Michael J. Delwiche, and Pieter, S., "Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production." Ind. Eng. Chem. Res., 48(8), 3713-3729 (2009). https://doi.org/10.1021/ie801542g
  5. Gramblic, M., and Polakovic, M., "Adsorption Equilibria of Glucose, Fructose, Sucrose, and Fructooligosaccharides on Cation Exchange Resins," J. Chem. Eng. Data, 52(2), 345-350 (2007). https://doi.org/10.1021/je060169d
  6. Zaldivar, J., Borges, A., Johansson, B., Smits, H. P., Villas-Boas, S. G., Nielsen, J., and Olsson, L., "Fermentation Performance and Intracellular Metabolite Patterns in Laboratory and Industrial Xylose-fermenting Saccharomyces cerevisiae," Appl. Microbiol. Biotechnol., 59, 436-442 (2002). https://doi.org/10.1007/s00253-002-1056-y
  7. Ohgren, K., Bengtsson, O., Gorwa-Grauslund, M. F., Galbe, M., Hahn-Hagerdal, B., and Zacchi, G., "Simultaneous Saccharification and Co-fermentation of Glucose and Xylose in Steampretreated Corn Stover at High Fiber Content with Saccharomyces cerevisiae TMB3400," J. Biotechnol., 126, 488-498 (2006). https://doi.org/10.1016/j.jbiotec.2006.05.001
  8. Jung, H., Choi, Y. S., Yang, D. R., Joo, O. S., and Jong, K. D., "A Study on the Water-Ethanol Separation by Membrane-Aided Distillation in Bio-Ethanol Process," Clean Technology, 14(2), 129-135 (2008).
  9. Hamelinck, C. N., van Hooijdonk, G., Faaij, A. P. C., "Ethanol from Lignocellulosic Biomass: Techno-economic Performance in Short-, Middle- and Long-term," Biomass Bioenergy, 28, 384-410 (2005). https://doi.org/10.1016/j.biombioe.2004.09.002
  10. Zalesny, J. A., Zalesny, J. R. S., Coyle, D. R., and Hall, R. B., "Growth and Biomass of Populus Irrigated with Landfill Leachate," Forest Ecol. Manage., 248, 143-152 (2007). https://doi.org/10.1016/j.foreco.2007.04.045
  11. Park, J. I., Woo, H. C., and Lee, J. H., "Production of Bioenergy from Marine Algae: Status and Perspectives," Korean Chem. Eng. Res., 46(5), 833-844 (2008).
  12. Kim, K. S., and Kim, J. S., "Optimization of Ammonia Percolation Process for Ethanol Production from Miscanthus Sinensis," Korean Chem. Eng. Res., 48(6), 704-711 (2010).
  13. Wooley, R. J., and Putsche, V., "Development of and ASPEN PLUS Physical Property Database for Biofuels Components," NREL International Report, April, 1996.
  14. Hwangbo, J. K., Seo, J. K., and Kwak, Y. S., "The Pretreatment of Lignocellulosic Biomass for Bioethanol Production," RIST, 23(2), 126-131 (2009).
  15. Fong, W. S., "Ethanol for Gasohol," Process Economics Program, SRI INTERNATIONAL Report No. 149, 115-199 (1982).
  16. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., and Nilvebrant, N. O., "The Generation of Fermentation Inhibitors During Dilute Acid Hydrolysis of Softwood," Enzyme Microb. Technol., 24(3-4), 151-159 (1999). https://doi.org/10.1016/S0141-0229(98)00101-X
  17. Badger, P. C., "Ethanol From Cellulose : A General Review," in Janick, J and Whipkey, A., Eds., Trends in new crops and new uses, ASHS Press, Alexandria, VA., 17-21 (2002).
  18. Qin, W., "High Consistency Enzymatic Hydrolysis of Lignocellulose," University of British Columbia, April, 2010.
  19. Farone, W. A., and Cuzens, J. E., "Method of Separating Acids and Sugars Resulting from Strong Acid Hydrolysis," U.S. Patent No. 5580389 (1996).
  20. Lee, H. H., Kim, K. M., and Lee, C. H., "Principle and Technical Trends of Simulated Moving Bed(SMB) Processes," KIC News, 10(6), 23-31 (2007).
  21. Yu, Z., and Zhang, H., "Ethanol Fermentation of Acid-hydrolyzed Cellulosic Pyrolysate with Saccharomyces cerevisiae," Bioresource Technol., 93(2), 199-204 (2004). https://doi.org/10.1016/j.biortech.2003.09.016
  22. Lau, M. W., Gunawan, C., Balan, V., and Dale, B. E., "Comparing the Fermentation Performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A (LNH-ST) and Zymomonas Mobilis AX101 for Cellulosic Ethanol Production," Biotechnology for Biofuels, 3(11), (2010).
  23. Mohagheghi, A., Evans, K., Chou, Y. C., and Zhang. M., "Cofermentation of Glucose, Xylose, and Arabinose by Genomic DNA-integrated Xylose/Arabinose Fermenting Strain of Zymomonas Mobilis AX101," Appl. Biochem. Biotechnol., 98(1), 885-898 (2002).
  24. Knapp, J. P., and Doherty, M. F., "Low Energy Extractive Distillation Process for Producing Anhydrous Ethanol," U.S. Patent No. 5,035,776 (1991).
  25. Namboodiri, V. V., and Vane, L. M., "High Permeability Membranes for the Dehydration of Low Water Content Ethanol by Pervaporation," J. Membr. Sci., 306(1-2), 209-215 (2007). https://doi.org/10.1016/j.memsci.2007.08.050
  26. Tsuyumoto, M., Teramoto, A., and Meares, P., "Dehydration of Ethanol on a Pilot-plant Scale, Using a New Type of Hollow-fiber Membrane," J. Membrane Sci., 133, 83-94 (1997). https://doi.org/10.1016/S0376-7388(97)00090-2
  27. Cardona Alzate, C. A., and Sanchez Toro, O. J., "Energy Consumption Analysis of Integrated Flowsheets for Production of Fuel Ethanol from Lignocellulosic Biomass," Energy, 31, 2447-2459 (2006). https://doi.org/10.1016/j.energy.2005.10.020
  28. Kunihisa, K. S., and Ogawa, H., "Acid Hydrolysis of Cellulose in a Differential Scanning Calorimeter," J. Thermal Anal., 30, 49-59 (1985). https://doi.org/10.1007/BF02128114
  29. Wingren, A., Galbe, M., and Zacchi, G., "Energy Considerations for a SSF-based Softwood Ethanol Plant," Bioresource Technol., 99, 2121-2131 (2008). https://doi.org/10.1016/j.biortech.2007.05.058