References
- Grous, W. R., Converse, A. O., and Grethlein, H. E., "Effect of Steam Explosion Pretreatment on Pore Size and Enzymatic Hydrolysis of Poplar," Enzyme Microb. Technol., 8 (1986).
- Alizadeh, H., Teymouri, F., Gilbert, T. I., and Dale B. E., "Pretreatment of Switchgrass by Ammonia Fiber Explosion (AFEX)," Appl. Biochem. Biotechnol., 121-124, 1133-1141 (2005).
- Xie, Y., Phelps, D., Lee, C. H., Sedlak, M.,Ho, N., and Wang, N. H. L., "Comparison of Two Adsorbents for Sugar Recovery from Biomass Hydrolyzate," Ind. Eng. Chem. Res., 44, 6816-6823 (2005). https://doi.org/10.1021/ie049079x
- Kumar, P., Barrett, M. D., Michael J. Delwiche, and Pieter, S., "Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production." Ind. Eng. Chem. Res., 48(8), 3713-3729 (2009). https://doi.org/10.1021/ie801542g
- Gramblic, M., and Polakovic, M., "Adsorption Equilibria of Glucose, Fructose, Sucrose, and Fructooligosaccharides on Cation Exchange Resins," J. Chem. Eng. Data, 52(2), 345-350 (2007). https://doi.org/10.1021/je060169d
- Zaldivar, J., Borges, A., Johansson, B., Smits, H. P., Villas-Boas, S. G., Nielsen, J., and Olsson, L., "Fermentation Performance and Intracellular Metabolite Patterns in Laboratory and Industrial Xylose-fermenting Saccharomyces cerevisiae," Appl. Microbiol. Biotechnol., 59, 436-442 (2002). https://doi.org/10.1007/s00253-002-1056-y
- Ohgren, K., Bengtsson, O., Gorwa-Grauslund, M. F., Galbe, M., Hahn-Hagerdal, B., and Zacchi, G., "Simultaneous Saccharification and Co-fermentation of Glucose and Xylose in Steampretreated Corn Stover at High Fiber Content with Saccharomyces cerevisiae TMB3400," J. Biotechnol., 126, 488-498 (2006). https://doi.org/10.1016/j.jbiotec.2006.05.001
- Jung, H., Choi, Y. S., Yang, D. R., Joo, O. S., and Jong, K. D., "A Study on the Water-Ethanol Separation by Membrane-Aided Distillation in Bio-Ethanol Process," Clean Technology, 14(2), 129-135 (2008).
- Hamelinck, C. N., van Hooijdonk, G., Faaij, A. P. C., "Ethanol from Lignocellulosic Biomass: Techno-economic Performance in Short-, Middle- and Long-term," Biomass Bioenergy, 28, 384-410 (2005). https://doi.org/10.1016/j.biombioe.2004.09.002
- Zalesny, J. A., Zalesny, J. R. S., Coyle, D. R., and Hall, R. B., "Growth and Biomass of Populus Irrigated with Landfill Leachate," Forest Ecol. Manage., 248, 143-152 (2007). https://doi.org/10.1016/j.foreco.2007.04.045
- Park, J. I., Woo, H. C., and Lee, J. H., "Production of Bioenergy from Marine Algae: Status and Perspectives," Korean Chem. Eng. Res., 46(5), 833-844 (2008).
- Kim, K. S., and Kim, J. S., "Optimization of Ammonia Percolation Process for Ethanol Production from Miscanthus Sinensis," Korean Chem. Eng. Res., 48(6), 704-711 (2010).
- Wooley, R. J., and Putsche, V., "Development of and ASPEN PLUS Physical Property Database for Biofuels Components," NREL International Report, April, 1996.
- Hwangbo, J. K., Seo, J. K., and Kwak, Y. S., "The Pretreatment of Lignocellulosic Biomass for Bioethanol Production," RIST, 23(2), 126-131 (2009).
- Fong, W. S., "Ethanol for Gasohol," Process Economics Program, SRI INTERNATIONAL Report No. 149, 115-199 (1982).
- Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., and Nilvebrant, N. O., "The Generation of Fermentation Inhibitors During Dilute Acid Hydrolysis of Softwood," Enzyme Microb. Technol., 24(3-4), 151-159 (1999). https://doi.org/10.1016/S0141-0229(98)00101-X
- Badger, P. C., "Ethanol From Cellulose : A General Review," in Janick, J and Whipkey, A., Eds., Trends in new crops and new uses, ASHS Press, Alexandria, VA., 17-21 (2002).
- Qin, W., "High Consistency Enzymatic Hydrolysis of Lignocellulose," University of British Columbia, April, 2010.
- Farone, W. A., and Cuzens, J. E., "Method of Separating Acids and Sugars Resulting from Strong Acid Hydrolysis," U.S. Patent No. 5580389 (1996).
- Lee, H. H., Kim, K. M., and Lee, C. H., "Principle and Technical Trends of Simulated Moving Bed(SMB) Processes," KIC News, 10(6), 23-31 (2007).
- Yu, Z., and Zhang, H., "Ethanol Fermentation of Acid-hydrolyzed Cellulosic Pyrolysate with Saccharomyces cerevisiae," Bioresource Technol., 93(2), 199-204 (2004). https://doi.org/10.1016/j.biortech.2003.09.016
- Lau, M. W., Gunawan, C., Balan, V., and Dale, B. E., "Comparing the Fermentation Performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A (LNH-ST) and Zymomonas Mobilis AX101 for Cellulosic Ethanol Production," Biotechnology for Biofuels, 3(11), (2010).
- Mohagheghi, A., Evans, K., Chou, Y. C., and Zhang. M., "Cofermentation of Glucose, Xylose, and Arabinose by Genomic DNA-integrated Xylose/Arabinose Fermenting Strain of Zymomonas Mobilis AX101," Appl. Biochem. Biotechnol., 98(1), 885-898 (2002).
- Knapp, J. P., and Doherty, M. F., "Low Energy Extractive Distillation Process for Producing Anhydrous Ethanol," U.S. Patent No. 5,035,776 (1991).
- Namboodiri, V. V., and Vane, L. M., "High Permeability Membranes for the Dehydration of Low Water Content Ethanol by Pervaporation," J. Membr. Sci., 306(1-2), 209-215 (2007). https://doi.org/10.1016/j.memsci.2007.08.050
- Tsuyumoto, M., Teramoto, A., and Meares, P., "Dehydration of Ethanol on a Pilot-plant Scale, Using a New Type of Hollow-fiber Membrane," J. Membrane Sci., 133, 83-94 (1997). https://doi.org/10.1016/S0376-7388(97)00090-2
- Cardona Alzate, C. A., and Sanchez Toro, O. J., "Energy Consumption Analysis of Integrated Flowsheets for Production of Fuel Ethanol from Lignocellulosic Biomass," Energy, 31, 2447-2459 (2006). https://doi.org/10.1016/j.energy.2005.10.020
- Kunihisa, K. S., and Ogawa, H., "Acid Hydrolysis of Cellulose in a Differential Scanning Calorimeter," J. Thermal Anal., 30, 49-59 (1985). https://doi.org/10.1007/BF02128114
- Wingren, A., Galbe, M., and Zacchi, G., "Energy Considerations for a SSF-based Softwood Ethanol Plant," Bioresource Technol., 99, 2121-2131 (2008). https://doi.org/10.1016/j.biortech.2007.05.058