DOI QR코드

DOI QR Code

자기치유 공학재료: II. 무기재료

Self-healing Engineering Materials: II. Inorganic Materials

  • 김민희 (부산대학교 고분자공학과) ;
  • 강동은 (부산대학교 고분자공학과) ;
  • 윤지환 (부산대학교 고분자공학과) ;
  • 최은지 (부산대학교 고분자공학과) ;
  • 심상은 (인하대학교 화학공학과) ;
  • 윤주호 (자동차부품연구원) ;
  • 김일 (부산대학교 고분자공학과)
  • Kim, Min-Hee (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Kang, Dong-Eun (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Yoon, Ji-Hwan (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Choi, Eun-Ji (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Shim, Sang-Eun (Department of Chemical Engineering, Inha University) ;
  • Yun, Ju-Ho (Environmental Materials & Components R&D Center, Korea Automotive Technology Institute) ;
  • Kim, Il (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University)
  • 투고 : 2011.11.02
  • 심사 : 2011.06.16
  • 발행 : 2011.06.30

초록

자기치유재료란 장기간 사용에 의한 기계적 충격에 의해 발생된 손상을 치료할 수 있는 능력을 발휘하도록 구조적, 화학적으로 개질시킨 스마트 재료의 하나이다. 사용에 손상이 일어난 부위를 본질적으로 치유할 수 있는 재료(고분자, 세라믹, 금속 등)를 사용함으로써 부품의 수명을 길게 할 수 있고, 장기간 사용에 의한 분해로 야기되는 효율의 감소를 막을 수 있으며, 재료의 파괴에 의한 비용지출을 막을 수 있어 여러 산업 공정의 생산단가를 낮출 수 있다. 최근 차량용 자기치유 페인트가 가능하다는 니싼의 발표 이후 재료의 자기치유능력에 대한 관심이 고조되고 있다. 본 총설에서는 앞서 발표한 자기치유 유기재료에 이어 금속, 세라믹, 콘크리트 등 무기 재료의 자기치유방법에 대해서 알아보고, 향후의 방향을 제시하고자 한다.

Self-healing materials are a class of smart materials that have the structurally incorporated ability to repair damage caused by mechanical usage over time. A material (polymers, ceramics, metals, etc.) that can intrinsically correct damage caused by normal usage could lower production costs of a number of different industrial processes through longer part lifetime, reduction of inefficiency over time caused by degradation, as well as prevent costs incurred by material failure. The recent announcement from Nissan on the commercial release of scratch healing paints for use on car bodies has gained public interest on such a wonderful property of materials. This article is a second part of healing materials dealing with inorganic engineering materials such as metals, ceramics, and concrete. The healing mechanisms developed for the inorganic materials are to be discussed with the future prospect.

키워드

참고문헌

  1. Ghosh S. K., "Self-healing Materials Fundamentals, Design Strategies, and Applications," Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009.
  2. Shinya, N., "Self Healing of Mechanical Damage in Metallic Materials," Adv. Sci. Tech., 54, 152-157 (2008). https://doi.org/10.4028/www.scientific.net/AST.54.152
  3. Laha, K., Kyono, J., and Shinya, N., "Some Chemical and Microstructural Factors Influencing Creep Cavitation Resistance of Austenitic Stainless Steels," Philos. Mag., 87, 2483-2505 (2007). https://doi.org/10.1080/14786430701222747
  4. Laha, K., Kyono, J., and Shinya, N., "Advanced Creep Cavitation Resistance of Cu-Containing 18Cr - 12Ni - Nb Austenitic Stainless Steel," Scr. Mater., 56, 915-918 (2007). https://doi.org/10.1016/j.scriptamat.2006.12.030
  5. Shinya, N., and Kyono, J., "Effect of Boron Nitride Precipitation at Cavity Surface on Rupture Properties," Mater. Trans., 47, 2302-2307 (2006). https://doi.org/10.2320/matertrans.47.2302
  6. Laha, K., Kyono, J., Sasaki, T., Kishimoto, S., and Shinya, N., "Austenitic Stainless Steel through the Self-healing Effect of Boron for Creep Cavitation," Metall. Mater. Trans. A, 36A, 399-409 (2005).
  7. Shinya, N., Kyono, J., and Laha, K., "Self-Healing Effect of B Segregation on Creep Cavitation in Type 347 Austenitic Stainless Steel," J. Soc. Mater. Sci. Jap., 55, 317-322 (2006). https://doi.org/10.2472/jsms.55.317
  8. Lumley, R. N., O Donnell, K. G., Polmer, I. J., and Griffiths, J. R., "Enhanced Fatigue Resistance by Underageing an Al-Cu-Mg-Ag Alloy," Mater. Forum, 29, 256-261 (2005).
  9. Lumley, R. N., and Polmer, I. J., "Proceedings of the 1st International Conference on Self Healing Materials," First International Conference on Self Healing Materials, Noordwijk aan Zee, 2007.
  10. Lumley, R., "Advances in self healing of metals. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," Springer Series in Materials Science, 100, 219-254 (2007).
  11. Lumley, R. N., Polmear, I. J., and Morton, A. J., "Interrupted Aging and Secondary Precipitation in Aluminium Alloys," Mater. Sci. Technol., 19, 1483-1490 (2003). https://doi.org/10.1179/026708303225008112
  12. Hautakangas, S., Schut, H., van der Zwaag, S., Rivera Diaz del Castillo, P. E. J., and van Dijk, N. H., "The Role of the Aging Temperature on the Self Healing Kinetics in an Underaged AA2024 Aluminium Alloy. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," Springer Series in Materials Science, 100, 1-7 (2007).
  13. Hautakangas, S., Schut, H., and van Dijk, N. H., "Self Healing of Deformation Damage in Underaged Al-Cu-Mg Alloys," Scr. Mater., 58, 719-722 (2008). https://doi.org/10.1016/j.scriptamat.2007.11.039
  14. Heuer, A. H., and Roberts, J. P., "The Influence of Annealing on the Strength of Corundum Crystals," Pro. Brit. Ceram. Soc., 6, 17-27 (1966).
  15. Lange, F. F., and Gupta, T. K., "Crack Healing by Heat Treatment," J. Am. Ceram. Soc., 53(1), 54-55 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb12002.x
  16. Davies, L. M., "Effect of Heat Treatment on the Tensile Strength of Sapphire," Pro. Brit. Ceram. Soc., 6, 29-53 (1966).
  17. Lange, F. F., and Radford, K. C., "Healing of Surface Cracks in Polycrystalline $Al_{2}O_{3}$," J. Am. Ceram. Soc., 53(7), 420-421 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb12148.x
  18. Roberts, J. T. A., and Wrona, B. J., "Crack Healing in $UO_{2}$," J. Am. Ceram. Soc., 56(6), 297-299 (1973). https://doi.org/10.1111/j.1151-2916.1973.tb12499.x
  19. Bandyopadhyay, G., and Roberts, J. T. A., "Crack Healing and Strength Recovery in $UO_{2}$," J. Am. Ceram. Soc., 59(9-10), 415-419 (1976). https://doi.org/10.1111/j.1151-2916.1976.tb09508.x
  20. Gupta, T. K., "Kinetics of Strengthening of Thermally Shocked MgO and $Al_{2}O_{3}$," J. Am. Ceram. Soc., 59(9-10), 448-449 (1976). https://doi.org/10.1111/j.1151-2916.1976.tb09516.x
  21. Evans, A. G., and Charles, E. A., "Strength Recovery by Diffusive Crack Healing," Acta Metall., 25, 919-927 (1977). https://doi.org/10.1016/0001-6160(77)90179-1
  22. Lange, F. F., "Healing of Surface Cracks in Sic by Oxidation," J. Am. Ceram. Soc., 53(5), 290-296 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb12104.x
  23. Easler, T. E., Bradt, R. C., and Tressler, R. E., "Effects of Oxidation under Load Strength Distributions of $Si_{3}N_{4}$," J. Am. Ceram. Soc., 65(6), 317-320 (1982). https://doi.org/10.1111/j.1151-2916.1982.tb10451.x
  24. Chu, M. C., Cho, S. J., Yoon, K. J., and Park, H. M., "Crack Repairing in Alumina by Penetrating Glass," J. Am. Ceram. Soc., 88(2), 491-493 (2005). https://doi.org/10.1111/j.1551-2916.2005.00086.x
  25. Niihara, K., and Nakahira, A., "Strengthening of Oxide Ceramics by SiC and Si3N4 dispersions," Proceeding of the Third International Symposium on Ceramic Materials and Components for Engines, American Ceramics Society, Westerville, 1998, pp. 919-926.
  26. Niihara, K., "New Design Concept of Structural Ceramics-Nanocomposites," J. Am. Ceram. Soc., 9(10), 974-982 (1991).
  27. Niihara, K., Nakahira, A., and Sekino, T., "New Nano Composite Structural Ceramics," Materials Research Society Symposium Proceedings, 286, 405-412 (1993).
  28. Thompson, A. M., Chan, H. M., and Harmer, M. P., "Crack Healing and Stress Relaxation in $Al_{2}O_{3}$-SiC Nanocomposites," J. Am. Ceram. Soc., 78(3), 567-571 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08215.x
  29. Chou, I. A., Chan, H. M., and Harmer, M. P., "Effect of Annealing Environment on the Crack Healing and Mechanical Behavior of SiC Reinforced Alumina Nanocomposites," J. Am. Ceram. Soc., 81(5), 1203-1208 (1998).
  30. Wu, H. Z., Lawrence, C. W., Roberts, S. G., and Derby, B. "The Strength of $Al_{2}O_{3}$/SiC Nanocomposites after Grinding and Annealing," Acta Materialia, 46(11), 3839-3848 (1998). https://doi.org/10.1016/S1359-6454(98)00068-8
  31. Chu, M. C., Sato, S., Kobayashi, Y., and Ando, K., "Damage Healing and Strengthening Behavior in Intelligent Mullite/SiC Ceramics," Fatigue Fract. Eng. Mater. Struct., 18(9), 1019-1029 (1995).
  32. Ando, K., Tsuji, K., Hirasawa, T., Kobayashi, Y., Chu, M. C., and Sato, S., "Crack Healing Behavior and High Temperature Strength of Mullite/SiC Composite Ceramics," J. Soc. Mater. Sci., Jap., 48(5), 489-494 (1999). https://doi.org/10.2472/jsms.48.489
  33. Ando, K., Tsuji, K., Ariga, M., and Sato, S., "Fatigue Strength Properties of Crack Healed Mullite/SiC Composite Ceramics," J. Soc. Mater. Sci. Jap., 48(10), 1173-1178 (1999). https://doi.org/10.2472/jsms.48.1173
  34. Ando, K., Ikeda, T., Sato, S., Yao, F., and Kobayasi, Y., "A Preliminary Study on Crack Healing Behaviour of $Si_{3}N_{4}$/SiC Composite Ceramics," Fatigue Fract. Eng. Mater. Struct., 21, 119-122 (1998).
  35. Liu, S.-P., Ando, K., Kim, B.-S., and Takahashi, K., "In Situ Crack-Healing Behavior of $Al_{2}O_{3}$/SiC Composite Ceramics under Static Fatigue Strength," Int. Commun. Heat & Mass Transfer, 36, 563-568 (2009). https://doi.org/10.1016/j.icheatmasstransfer.2009.03.005
  36. Ando, K., Chu, M. C., Yao, F., and Sato, S., "Fatigue Strength of Crack-Healed $Si_{3}N_{4}$/SiC Composite Ceramics," Fatigue Fract. Eng. Mater. Struct., 22, 897-903 (1999). https://doi.org/10.1046/j.1460-2695.1999.00210.x
  37. Yao, F., Ando, K., Chu, M. C., and Sato, S., "Crack-Healing Behavior, High Temperature and Fatigue Strength of SiC-Reinforced Silicon Nitride Composite," J. Mater. Sci. Lett., 19, 1081-1083 (2000). https://doi.org/10.1023/A:1006715825737
  38. Ando, K., Kim, B. S., Chu, M. C., Saito, S., and Takahashi, K., "Crack-Healing and Mechanical Behaviour of $Al_{2}O_{3}$/SiC Composites at Elevated Temperature," Fatigue Fract. Eng. Mater. Struct., 27, 533-541 (2004). https://doi.org/10.1111/j.1460-2695.2004.00785.x
  39. Kim, B. S., Ando, K., Chu, M. C., and Saito, S., "Crack-Healing Behavior of Monolithic Alumina and Strength of Crack-Healed Member," J. Soc. Mater. Sci. Jap., 52(6), 667-673 (2003). https://doi.org/10.2472/jsms.52.667
  40. Ando, K., Kim, B. S., Kodama, S., Ryu, S. H., Takahashi, K., and Saito, S., "Fatigue Strength of an $Al_{2}O_{3}$/SiC Composite and a Monolithic $Al_{2}O_{3}$ Subjected to Crack-Healing Treatment," J. Soc. Mater. Sci. Jap., 52(11), 1464-1470 (2003). https://doi.org/10.2472/jsms.52.1464
  41. Nakao, W., Chiba Y., Iwata, K., Nishi, Y., and Ando, K., "Strengthening of Ceramics Surface by Crack Healing and Electron Beam Irradiation," Int. J. Appl. Ceram. Tech., DOI:10.1111/j.1744-7402.2009.02445.x.
  42. Sloof, W. G., "Self healing in coatings at high temperatures. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," Springer Series in Materials Science, 100, 309-321 (2007).
  43. Kochubey, V., and Sloof, W. G., "Self Healing Mechanism in Thermal Barrier Coatings," Proc. Int. Thermal Spray Conf., Maastricht, The Netherlands, 2-4 June 2008.
  44. Ando, K., Furusawa, K., Takahashi, K., and Sato, S. "Crack-Healing Ability of Structural Ceramics and a New Methodology to Guarantee the Structural Integrity," J. Eur. Ceram. Soc., 25, 549-558 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.01.027
  45. Song, G. M., Pei, Y. T., Sloof, W. G., Li, S. B., De Hosson, J. Th. M., and van der Zwaag, S., "Oxidation Induced Crack Healing of $Ti_{3}AlC_{2}$ Ceramics," Scr. Mater., 58, 13-16 (2008). https://doi.org/10.1016/j.scriptamat.2007.09.006
  46. Song, G. M., Pei, Y. T., Sloof, W. G., Li, S. B., De Hosson, J. Th. M., and van der Zwaag, S., "Early Stages of Oxidation of $Ti_{3}AlC_{2}$ Ceramics," Mater. Chem. Phys., 112, 762-768 (2008). https://doi.org/10.1016/j.matchemphys.2008.06.038
  47. Li, V. C., and Yang, E., "Self Healing in Concrete Materials. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," Springer Series in Materials Science, 100, 161-194 (2007).
  48. Nijland, T. G., Larbi, J. A., van Hees, R. P. J., Lubelli, B., and de Rooij, M., "Self Healing Phenomena in Concretes and Masonry Mortars: a Microscopic Study," Proc. 1st Int. Conf. on Self Healing Materials, Dordrecht, The Netherlands: Springer, 2007, pp. 1-9.
  49. Yang, E. H., and Li, V. C., "Strain-hardening Fiber Cement Optimization and Component Tailoring by means of a Micromechanical Model," J. Construct. Build. Mater., 24, 130-139 (2010). https://doi.org/10.1016/j.conbuildmat.2007.05.014
  50. Lepech, M. D., and Li, V. C., "Long Term Durability Performance of Engineered Cementitious Composites," Int. J. Restoration Buildings Monuments, 12, 119-132 (2006).
  51. Worrell, E., Price, L., Martin, N., Hendriks, C., and Ozawa Meida, L., "Carbon Dioxide Emissions from the Global Cement Industry," Annu. Rev. Energy Environ., 26, 303-329 (2001). https://doi.org/10.1146/annurev.energy.26.1.303
  52. Bang, S. S., Galinat, J. K., and Ramakrishnan, V., "Calcite Precipitation Induced by Polyurethane-Immobilized Bacillus Pasteurii," Enzyme Microb. Technol., 28, 404-409 (2001). https://doi.org/10.1016/S0141-0229(00)00348-3
  53. De Muynck, W., Debrouwer, D., De Belie, N., and Verstraete, W., "Bacterial Carbonate Precipitation Improves the Durability of Cementitious Materials," Cement Concrete Res., 38, 1005-1014 (2008). https://doi.org/10.1016/j.cemconres.2008.03.005
  54. Jonkers, H. M., "Self Healing Concrete: A Biological Approach. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," Springer Series in Materials Science, 100, 195-204 (2007).
  55. Jonkers, H. M., and van Loosdrecht, M. C. M., "BioGeoCivil Engineering," Ecol. Eng., 36, 97-98 (2010). https://doi.org/10.1016/j.ecoleng.2009.09.011