참고문헌
- Ghosh S. K., "Self-healing Materials Fundamentals, Design Strategies, and Applications," Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009.
- Shinya, N., "Self Healing of Mechanical Damage in Metallic Materials," Adv. Sci. Tech., 54, 152-157 (2008). https://doi.org/10.4028/www.scientific.net/AST.54.152
- Laha, K., Kyono, J., and Shinya, N., "Some Chemical and Microstructural Factors Influencing Creep Cavitation Resistance of Austenitic Stainless Steels," Philos. Mag., 87, 2483-2505 (2007). https://doi.org/10.1080/14786430701222747
- Laha, K., Kyono, J., and Shinya, N., "Advanced Creep Cavitation Resistance of Cu-Containing 18Cr - 12Ni - Nb Austenitic Stainless Steel," Scr. Mater., 56, 915-918 (2007). https://doi.org/10.1016/j.scriptamat.2006.12.030
- Shinya, N., and Kyono, J., "Effect of Boron Nitride Precipitation at Cavity Surface on Rupture Properties," Mater. Trans., 47, 2302-2307 (2006). https://doi.org/10.2320/matertrans.47.2302
- Laha, K., Kyono, J., Sasaki, T., Kishimoto, S., and Shinya, N., "Austenitic Stainless Steel through the Self-healing Effect of Boron for Creep Cavitation," Metall. Mater. Trans. A, 36A, 399-409 (2005).
- Shinya, N., Kyono, J., and Laha, K., "Self-Healing Effect of B Segregation on Creep Cavitation in Type 347 Austenitic Stainless Steel," J. Soc. Mater. Sci. Jap., 55, 317-322 (2006). https://doi.org/10.2472/jsms.55.317
- Lumley, R. N., O Donnell, K. G., Polmer, I. J., and Griffiths, J. R., "Enhanced Fatigue Resistance by Underageing an Al-Cu-Mg-Ag Alloy," Mater. Forum, 29, 256-261 (2005).
- Lumley, R. N., and Polmer, I. J., "Proceedings of the 1st International Conference on Self Healing Materials," First International Conference on Self Healing Materials, Noordwijk aan Zee, 2007.
- Lumley, R., "Advances in self healing of metals. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," Springer Series in Materials Science, 100, 219-254 (2007).
- Lumley, R. N., Polmear, I. J., and Morton, A. J., "Interrupted Aging and Secondary Precipitation in Aluminium Alloys," Mater. Sci. Technol., 19, 1483-1490 (2003). https://doi.org/10.1179/026708303225008112
- Hautakangas, S., Schut, H., van der Zwaag, S., Rivera Diaz del Castillo, P. E. J., and van Dijk, N. H., "The Role of the Aging Temperature on the Self Healing Kinetics in an Underaged AA2024 Aluminium Alloy. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," Springer Series in Materials Science, 100, 1-7 (2007).
- Hautakangas, S., Schut, H., and van Dijk, N. H., "Self Healing of Deformation Damage in Underaged Al-Cu-Mg Alloys," Scr. Mater., 58, 719-722 (2008). https://doi.org/10.1016/j.scriptamat.2007.11.039
- Heuer, A. H., and Roberts, J. P., "The Influence of Annealing on the Strength of Corundum Crystals," Pro. Brit. Ceram. Soc., 6, 17-27 (1966).
- Lange, F. F., and Gupta, T. K., "Crack Healing by Heat Treatment," J. Am. Ceram. Soc., 53(1), 54-55 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb12002.x
- Davies, L. M., "Effect of Heat Treatment on the Tensile Strength of Sapphire," Pro. Brit. Ceram. Soc., 6, 29-53 (1966).
-
Lange, F. F., and Radford, K. C., "Healing of Surface Cracks in Polycrystalline
$Al_{2}O_{3}$ ," J. Am. Ceram. Soc., 53(7), 420-421 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb12148.x -
Roberts, J. T. A., and Wrona, B. J., "Crack Healing in
$UO_{2}$ ," J. Am. Ceram. Soc., 56(6), 297-299 (1973). https://doi.org/10.1111/j.1151-2916.1973.tb12499.x -
Bandyopadhyay, G., and Roberts, J. T. A., "Crack Healing and Strength Recovery in
$UO_{2}$ ," J. Am. Ceram. Soc., 59(9-10), 415-419 (1976). https://doi.org/10.1111/j.1151-2916.1976.tb09508.x -
Gupta, T. K., "Kinetics of Strengthening of Thermally Shocked MgO and
$Al_{2}O_{3}$ ," J. Am. Ceram. Soc., 59(9-10), 448-449 (1976). https://doi.org/10.1111/j.1151-2916.1976.tb09516.x - Evans, A. G., and Charles, E. A., "Strength Recovery by Diffusive Crack Healing," Acta Metall., 25, 919-927 (1977). https://doi.org/10.1016/0001-6160(77)90179-1
- Lange, F. F., "Healing of Surface Cracks in Sic by Oxidation," J. Am. Ceram. Soc., 53(5), 290-296 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb12104.x
-
Easler, T. E., Bradt, R. C., and Tressler, R. E., "Effects of Oxidation under Load Strength Distributions of
$Si_{3}N_{4}$ ," J. Am. Ceram. Soc., 65(6), 317-320 (1982). https://doi.org/10.1111/j.1151-2916.1982.tb10451.x - Chu, M. C., Cho, S. J., Yoon, K. J., and Park, H. M., "Crack Repairing in Alumina by Penetrating Glass," J. Am. Ceram. Soc., 88(2), 491-493 (2005). https://doi.org/10.1111/j.1551-2916.2005.00086.x
- Niihara, K., and Nakahira, A., "Strengthening of Oxide Ceramics by SiC and Si3N4 dispersions," Proceeding of the Third International Symposium on Ceramic Materials and Components for Engines, American Ceramics Society, Westerville, 1998, pp. 919-926.
- Niihara, K., "New Design Concept of Structural Ceramics-Nanocomposites," J. Am. Ceram. Soc., 9(10), 974-982 (1991).
- Niihara, K., Nakahira, A., and Sekino, T., "New Nano Composite Structural Ceramics," Materials Research Society Symposium Proceedings, 286, 405-412 (1993).
-
Thompson, A. M., Chan, H. M., and Harmer, M. P., "Crack Healing and Stress Relaxation in
$Al_{2}O_{3}$ -SiC Nanocomposites," J. Am. Ceram. Soc., 78(3), 567-571 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08215.x - Chou, I. A., Chan, H. M., and Harmer, M. P., "Effect of Annealing Environment on the Crack Healing and Mechanical Behavior of SiC Reinforced Alumina Nanocomposites," J. Am. Ceram. Soc., 81(5), 1203-1208 (1998).
-
Wu, H. Z., Lawrence, C. W., Roberts, S. G., and Derby, B. "The Strength of
$Al_{2}O_{3}$ /SiC Nanocomposites after Grinding and Annealing," Acta Materialia, 46(11), 3839-3848 (1998). https://doi.org/10.1016/S1359-6454(98)00068-8 - Chu, M. C., Sato, S., Kobayashi, Y., and Ando, K., "Damage Healing and Strengthening Behavior in Intelligent Mullite/SiC Ceramics," Fatigue Fract. Eng. Mater. Struct., 18(9), 1019-1029 (1995).
- Ando, K., Tsuji, K., Hirasawa, T., Kobayashi, Y., Chu, M. C., and Sato, S., "Crack Healing Behavior and High Temperature Strength of Mullite/SiC Composite Ceramics," J. Soc. Mater. Sci., Jap., 48(5), 489-494 (1999). https://doi.org/10.2472/jsms.48.489
- Ando, K., Tsuji, K., Ariga, M., and Sato, S., "Fatigue Strength Properties of Crack Healed Mullite/SiC Composite Ceramics," J. Soc. Mater. Sci. Jap., 48(10), 1173-1178 (1999). https://doi.org/10.2472/jsms.48.1173
-
Ando, K., Ikeda, T., Sato, S., Yao, F., and Kobayasi, Y., "A Preliminary Study on Crack Healing Behaviour of
$Si_{3}N_{4}$ /SiC Composite Ceramics," Fatigue Fract. Eng. Mater. Struct., 21, 119-122 (1998). -
Liu, S.-P., Ando, K., Kim, B.-S., and Takahashi, K., "In Situ Crack-Healing Behavior of
$Al_{2}O_{3}$ /SiC Composite Ceramics under Static Fatigue Strength," Int. Commun. Heat & Mass Transfer, 36, 563-568 (2009). https://doi.org/10.1016/j.icheatmasstransfer.2009.03.005 -
Ando, K., Chu, M. C., Yao, F., and Sato, S., "Fatigue Strength of Crack-Healed
$Si_{3}N_{4}$ /SiC Composite Ceramics," Fatigue Fract. Eng. Mater. Struct., 22, 897-903 (1999). https://doi.org/10.1046/j.1460-2695.1999.00210.x - Yao, F., Ando, K., Chu, M. C., and Sato, S., "Crack-Healing Behavior, High Temperature and Fatigue Strength of SiC-Reinforced Silicon Nitride Composite," J. Mater. Sci. Lett., 19, 1081-1083 (2000). https://doi.org/10.1023/A:1006715825737
-
Ando, K., Kim, B. S., Chu, M. C., Saito, S., and Takahashi, K., "Crack-Healing and Mechanical Behaviour of
$Al_{2}O_{3}$ /SiC Composites at Elevated Temperature," Fatigue Fract. Eng. Mater. Struct., 27, 533-541 (2004). https://doi.org/10.1111/j.1460-2695.2004.00785.x - Kim, B. S., Ando, K., Chu, M. C., and Saito, S., "Crack-Healing Behavior of Monolithic Alumina and Strength of Crack-Healed Member," J. Soc. Mater. Sci. Jap., 52(6), 667-673 (2003). https://doi.org/10.2472/jsms.52.667
-
Ando, K., Kim, B. S., Kodama, S., Ryu, S. H., Takahashi, K., and Saito, S., "Fatigue Strength of an
$Al_{2}O_{3}$ /SiC Composite and a Monolithic$Al_{2}O_{3}$ Subjected to Crack-Healing Treatment," J. Soc. Mater. Sci. Jap., 52(11), 1464-1470 (2003). https://doi.org/10.2472/jsms.52.1464 - Nakao, W., Chiba Y., Iwata, K., Nishi, Y., and Ando, K., "Strengthening of Ceramics Surface by Crack Healing and Electron Beam Irradiation," Int. J. Appl. Ceram. Tech., DOI:10.1111/j.1744-7402.2009.02445.x.
- Sloof, W. G., "Self healing in coatings at high temperatures. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," Springer Series in Materials Science, 100, 309-321 (2007).
- Kochubey, V., and Sloof, W. G., "Self Healing Mechanism in Thermal Barrier Coatings," Proc. Int. Thermal Spray Conf., Maastricht, The Netherlands, 2-4 June 2008.
- Ando, K., Furusawa, K., Takahashi, K., and Sato, S. "Crack-Healing Ability of Structural Ceramics and a New Methodology to Guarantee the Structural Integrity," J. Eur. Ceram. Soc., 25, 549-558 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.01.027
-
Song, G. M., Pei, Y. T., Sloof, W. G., Li, S. B., De Hosson, J. Th. M., and van der Zwaag, S., "Oxidation Induced Crack Healing of
$Ti_{3}AlC_{2}$ Ceramics," Scr. Mater., 58, 13-16 (2008). https://doi.org/10.1016/j.scriptamat.2007.09.006 -
Song, G. M., Pei, Y. T., Sloof, W. G., Li, S. B., De Hosson, J. Th. M., and van der Zwaag, S., "Early Stages of Oxidation of
$Ti_{3}AlC_{2}$ Ceramics," Mater. Chem. Phys., 112, 762-768 (2008). https://doi.org/10.1016/j.matchemphys.2008.06.038 - Li, V. C., and Yang, E., "Self Healing in Concrete Materials. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," Springer Series in Materials Science, 100, 161-194 (2007).
- Nijland, T. G., Larbi, J. A., van Hees, R. P. J., Lubelli, B., and de Rooij, M., "Self Healing Phenomena in Concretes and Masonry Mortars: a Microscopic Study," Proc. 1st Int. Conf. on Self Healing Materials, Dordrecht, The Netherlands: Springer, 2007, pp. 1-9.
- Yang, E. H., and Li, V. C., "Strain-hardening Fiber Cement Optimization and Component Tailoring by means of a Micromechanical Model," J. Construct. Build. Mater., 24, 130-139 (2010). https://doi.org/10.1016/j.conbuildmat.2007.05.014
- Lepech, M. D., and Li, V. C., "Long Term Durability Performance of Engineered Cementitious Composites," Int. J. Restoration Buildings Monuments, 12, 119-132 (2006).
- Worrell, E., Price, L., Martin, N., Hendriks, C., and Ozawa Meida, L., "Carbon Dioxide Emissions from the Global Cement Industry," Annu. Rev. Energy Environ., 26, 303-329 (2001). https://doi.org/10.1146/annurev.energy.26.1.303
- Bang, S. S., Galinat, J. K., and Ramakrishnan, V., "Calcite Precipitation Induced by Polyurethane-Immobilized Bacillus Pasteurii," Enzyme Microb. Technol., 28, 404-409 (2001). https://doi.org/10.1016/S0141-0229(00)00348-3
- De Muynck, W., Debrouwer, D., De Belie, N., and Verstraete, W., "Bacterial Carbonate Precipitation Improves the Durability of Cementitious Materials," Cement Concrete Res., 38, 1005-1014 (2008). https://doi.org/10.1016/j.cemconres.2008.03.005
- Jonkers, H. M., "Self Healing Concrete: A Biological Approach. In Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," Springer Series in Materials Science, 100, 195-204 (2007).
- Jonkers, H. M., and van Loosdrecht, M. C. M., "BioGeoCivil Engineering," Ecol. Eng., 36, 97-98 (2010). https://doi.org/10.1016/j.ecoleng.2009.09.011