DOI QR코드

DOI QR Code

A Study on the Liquefaction Behavior of Bottom Ash

Bottom Ash의 액상화 저항특성 연구

  • Received : 2011.05.02
  • Accepted : 2011.06.24
  • Published : 2011.06.30

Abstract

In this study relative density tests of bottom ash and standard sand were carried out. And cyclic triaxial tests for samples with the relative density of 40%, 55%, and 70% were carried out on the basis of the test results. Cyclic triaxial tests were also conducted for fines content with 55% relative density. Residual samples were divided into No.40, No.60, No.60, and No.100, and No.200. In order to avoid crashing that can happen when compaction of the sample is initiated, bottom ash was crushed using the a compact mold. In consideration of the crushing characteristics of each residual samples, the fragmentation rate increased up to 30%, which led to the adjustment of fine-grained amount to 10%, 20%, and 30%. Through the repative triaxial test in accordance with the relative density, resistant characteristics of the liquefaction of bottom ash was analyzed. Test results show that, crushing strength of bottom ash was smaller than that of standard sand, resulting in different liquefaction behavior characteristics. And we could find fines content with maximum resistant characteristics of the liquefaction.

본 연구에서는 Bottom Ash와 표준사의 상대밀도시험을 실시하여 시험결과를 토대로 40%, 55%, 70%의 상대밀도로 반복삼축시험을 실시하였다. 또한, 55%의 상대밀도로 세립분 함유량에 따른 반복삼축시험을 실시하였다. 시료는 No.40체, No.60체, No.100체, No.200체 잔류시료로 분류를 하여 현장에서 시료의 다짐을 실시한 경우 발생될 수 있는 시료의 파쇄를 고려하여 Bottom Ash를 A다짐 몰드를 이용한 파쇄시험을 실시하였다. 각 체의 잔류시료의 파쇄특성을 고려하면 A다짐에 따른 파쇄율은 약 30%까지 증가하게 되어 세립분 함유량을 10%, 20%, 30%로 조정하여 상대밀도 시험을 실시하였다. 상대밀도에 따른 반복삼축시험을 통해 Bottom Ash의 액상화 저항특성을 분석하였다. 시험결과 Bottom Ash의 경우 파쇄강도가 표준사에 비해 작아 축차응력에 크기에 따라 기존 포화사질토와 상이한 액상화 거동특성을 보였으며, 시료의 세립분의 함유량에 따라 액상화 저항특성이 최대인 세립분 함유량을 찾을 수 있었다.

Keywords

References

  1. 건설교통부 (2003), "구조물 기초설계기준 해설".
  2. 김영진 (2005), "Bottom Ash를 활용한 콘크리트용 골재사용의 실험 연구", 한서대학교 석사학위논문.
  3. 김상천 (2009), "Sand Mat용 재료로서 Bottom Ash의 적용성 연구", 순천대학교 석사학위논문.
  4. 김종국 (2009), "인천지역 매립지반에 적용된 모래다짐말뚝의 거동특성 평가", 수원대학교 박사학위 논문.
  5. 이호영 (2008), "세립분 함유량에 따른 석탄회의 액상화 거동", 인하대학교 석사학위논문.
  6. 이영휘 (2008), "저회의 연직배수재로서 활용에 관한 연구", 한양대학교 석사학위논문.
  7. 윤원섭, 한재운, 신승구, 채영수 (2010), "석탄회의 동적거동특성 연구", 한국지반공학회 가을학술발표회 논문집, pp.1142-1150.
  8. 최재순 (2003), "교란상태개념에 기초한 포화사질토의 비배수 동적거동 예측기법개발", 연세대학교 박사학위 논문.
  9. 한국지진공학회 (1999), "항만 및 어항시설의 내진설계 표준서", 해양수산부.
  10. 황대진 (1993), "실트를 포함하는 모래질 흙의 액상화강도에 관한 연구", 대한토목학회 논문집, 13(2), pp.243-252.
  11. Chu, S.C., Kao, H.S. (1993), "A Study of Engineering Properties of a Clay Modified by Fly Ash and Slag", Fly Ash for Soil Improvement, ASCE, Geotechnical Special Publication (36), pp.89-99.
  12. Ishihara, K., Yasuda, S. (1975), "Sand Liquefaction in Hollow Cylinder Torsion under Irregular Excitation", Soil and Foundations, 15(1), pp.45-59. https://doi.org/10.3208/sandf1972.15.45
  13. Seals, R.K., Moulton, L.K., Ruth, B.E. (1972), "Bottom Ash : An Engineering Material", Journal of the Soil Mechanics and Foundations Division, ASCE, 98(SM4), pp.311-325.
  14. Sweeny, L.R., Rivard-Lentz, D.J., Demars, K.R. (1996), "Physical Chemical Beavior of Incinerator Bottom Ash", Proceedings of the 3rd International Symposium on Environmental Geotechnology, San Diego, California, USA, 1, pp.416-425.