DOI QR코드

DOI QR Code

Detection of $Bacillus$ $cereus$ Group from Raw Rice and Characteristics of Biofilm Formation

쌀로부터 $Bacillus$ $cereus$ Group의 분리와 Biofilm 형성 특성

  • 김진영 (경원대학교 식품생물공학과) ;
  • 유혜림 (경원대학교 식품생물공학과) ;
  • 이영덕 (경원대학교 식품생물공학과) ;
  • 박종현 (경원대학교 식품생물공학과)
  • Received : 2011.11.01
  • Accepted : 2011.12.09
  • Published : 2011.12.31

Abstract

$Bacillus$ $cereus$ is widely distributed on various foods and is known to cause clinical infections, food poisoning toxin induced diarrhea and vomiting. In this study, $B.$ $cereus$ group detected and analyzed rice, rice bran, and biofilm characterization of $B.$ $cereus$ confirmed. $B.$ $cereus$ was identified in approximately 34.6% of brown rice and 50.0% of rice bran. $B.$ $thuringiensis$ was detected in 3.9% of brown rice and 23% of rice bran, and $B.$ $mycoides$ was isolated from rice bran. The microtiter plate assay detected differences in biofilm-forming ability among $B.$ $cereus$ group isolates. Biofilm of $B.$ $cereus$ seemed to increase the MIC values of antimicrobial agent and antibiotic compounds compared with planktonic cells. Therefore, sufficient attention should be given to good manufacturing practice and good agriculture practice to avoid contamination of $B.$ $cereus$ group raw material including rice.

본 연구에서는 서울, 경기, 강원도, 충남 지역의 벼를 수집하여 쌀겨와 현미에서의 $B.$ $cereus$ group을 분리하였으며, 분포분석을 통해 작물의 오염 정도를 알아보았고, biofilm 형성시 특성을 연구하였다. $B.$ $cereus$는 총 26개의 시료 가운데 쌀에서 34.6%, 쌀겨에서 50.0%로 가장 높은 분포도를 나타냈으며, $B.$ $thuringiensis$는 쌀에서 3.9%, 쌀겨에서 23%의 분포를 보였다. 분리된 균주의 biofilm 형성 능력 실험에서는 시간이 지남에 따라 biofilm 형성 정도가 증가하였으며, 표준 균주에 비해 분리 균주가 biofilm 형성 능력이 높은 것으로 나타났다. 또한 biofilm이 형성된 $B.$ $cereus$의 경우 항생제와 항균제 처리에 따른 최소저해농도는 부유 세균에 비해 대체적으로 높은 내성을 나타내는 것으로 확인되었다.

Keywords

References

  1. Auger S, Ramarao N, Faille C, Fouet A, Aymerich S, Gohar M. 2009. Biofilm formation and cell surface properties among pathogenic and nonpathogenic strains of the Bacillus cereus group. Appl Environ Microbiol 75:6616-6618 https://doi.org/10.1128/AEM.00155-09
  2. Augustine N, Kumar P, Thomas S. 2010. Inhibition of Vibrio cholera biofilm by AiiA enzyme produced from Bacillus spp. Arch Microbiol 192:1019-1022 https://doi.org/10.1007/s00203-010-0633-1
  3. Buyer JS. 1995. A soil and rhizosphere microorganism isolation and enumeration medium that inhibits Bacillus mycoides. Appl Environ Microbiol 61:1839-1842
  4. Chang HJ, Lee JH. 2009. Prevalence of Bacillus cereus from fried rice dishes and monitoring guidelines for risk management. Korean J Food Cookery Sci 25:45-54
  5. Chitov T, Dispan R, Kasinrerk W. 2008. Incidence and diarrhegenic potential of Bacillus cereus in pasteurized milk and cereal products in Thailand. J Food Saf 28:467-481 https://doi.org/10.1111/j.1745-4565.2008.00125.x
  6. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappinscott HM. 1995. Microbial biofilms. Annu Rev Microbiol 49:711-745 https://doi.org/10.1146/annurev.mi.49.100195.003431
  7. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284: 1318-1322 https://doi.org/10.1126/science.284.5418.1318
  8. Drobniewski FA. 1993. Bacillus cereus and related species. Clin Microbiol Rev 6:324-338 https://doi.org/10.1128/CMR.6.4.324
  9. Elhariry HM. 2011. Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: Cabbage and lettuce. Food Microbiol 28:1266-1274 https://doi.org/10.1016/j.fm.2011.05.004
  10. Granum PE, Lund T. 1997. Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 157:223-228 https://doi.org/10.1111/j.1574-6968.1997.tb12776.x
  11. Granum PE. 1994. Bacillus cereus and its toxins. J Appl Microbiol 76:61S-66S https://doi.org/10.1111/j.1365-2672.1994.tb04358.x
  12. Ham HJ, Kim MS. 2006. Bacillus spp. & B. cereus isolated in dried marine products. J Fd Hyg Safety 21:159-163
  13. Isara AR, Isah EC, Lofor PVO, Ojide CK. 2010. Food contamination in fast food restaurants in Benin city, Edo state, Nigeria: Implications food hygiene and safety. Public Health 124:467-471 https://doi.org/10.1016/j.puhe.2010.03.028
  14. Jeon JH, Park JH. 2010. Toxin gene analysis of Bacillus cereus and Bacillus thuringiensis isolated from cooked rice. Kor J Food Sci Technol 42:361-367
  15. Jo MJ, Jeong AR, Kim HJ, Lee NR, Oh SW, Kim YJ, Chun HS, Koo MS. 2001. Microbiological quality of fresh-cut produce and organic vegetables. Kor J Food Sci Technol 43:91-97
  16. Kim DA, Kim JS, Kil MR, Youn YN, Park DS, Yu YM. 2006. Isolation and activity of insect pathogenic Bacillus thuringeinsis strain from soil. Kor J Appl Entomol 45:357-362
  17. Kim HS, Park HW, Lee DW, Yu YM, Kang SK. 1995. Characterization of Bacillus thuringeinsis isolated in granary dust. Kor J Appl Entomol 34:243-248
  18. Kim HU, Goepfert JM. 1971. Enumeration and identification of Bacillus cereus in foods. Appl Microbiol 22:581-587
  19. Kim HY, Oh SW, Chung SY, Choi SH, Lee JW, Yang JY, Seo EC, Kim YH, Park HO, Yang CY, Ha SC, Shin IS. 2001. An investigation of microbial contamination of ready-to-eat products in Seoul, Korea. Kor J Food Sci Technol 43:39-44
  20. Kim JE, Kim JY, Yoon JY. 2006. Disinfection efficiency of silver disinfectants for biofilm. J Korean Soc Environ Eng 28:81-87
  21. Kim SH, Kim JS, Choi JP, Park JH .2006. Prevalence and frequency of food-borne pathogens on unprocessed agricultural and marine products. Kor J Food Sci Technol 38:594-598
  22. Kim SR, Lee JY, Lee SH, Ryu KY, Park KH, Kim BS, Yoon YH, Shim WB, Kim KY, Ha SD, Yun JC, Chung DH. 2001. Profiles of toxin genes and antibiotic susceptibility of Bacillus cereus. Kor J Food Sci Technol 43:134-141
  23. Kramer JM, Gillbert RJ. 1989. Bacillus cereus and other Bacillus species. Food-borne Bacterial Pathogens. Doyle MP (ed). Marcel Dekker: 21-70
  24. Kwon KK, Lee HS, Jung SY, Yim JH, Lee JH, Lee HK. 2002. Isolation and identification of biofilm-forming marine bacteria on glass surfaces in Dae-Ho Dike. Kor J Microbiol 40:260-266
  25. Lapidus A, Goltsman E, Auger S, Galleron N, Segurens B, Dossat C, Land ML, Broussolle V, Brillard J, Guinebretiere MH, Sanchis V, Nguen-the C, Lereclus D, Richardson P, Wincker P, Weissenbach J, Ehrlich SD, Sorokin A. 2008. Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chem Biol Interact 171:236-249 https://doi.org/10.1016/j.cbi.2007.03.003
  26. Lechner S, Mayr R, Francis KP, Prüss BM, Kaplan T, Wiessner- Gunkel E, Stewart GS, Scherer S. 1998. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48:1373-1382 https://doi.org/10.1099/00207713-48-4-1373
  27. Lee MS, Chang DS. 1980. Distribution and physiological characteristic of Bacillus cereus in rice and rice products. Korean Fish Soc 13:163-171
  28. Lee SY, Kim JH, Kim KB, Song EJ, Kim AR, Park SM, Han CS, Ahn DH. 2007. Antimicrobial activities of medicinal herbs and seaweeds extracts against microorganisms isolated from the rice warehouses. J Korean Soc Food Sci Nutr 36: 476-480 https://doi.org/10.3746/jkfn.2007.36.4.476
  29. Marinda CO, Bridgitta S, Jacques T, Pascal C, Denise L, Alexander VH, Volker SB. 2002. Proteomic analysis reveals differential protein expression by Bacillus cereus during Biofilm formation. Appl Environ Microbiol 68:2770-2780 https://doi.org/10.1128/AEM.68.6.2770-2780.2002
  30. Mheen, TI, Narasimhan KS, Cheigh HS, Majumder SK. 1982. Studies in the growth and control of storage fungi in stored paddy rice. Korean J Appl Microbiol Bioeng 10:297-305
  31. Nakamura LK. 1998. Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol 48:1031-1035 https://doi.org/10.1099/00207713-48-3-1031
  32. Nguyen MD, Daisuke H, Fumihiko T, Toshitaka U. 2011. Control of milk pH reduces Biofilm formation of Bacillus licheniformis and Lactobacillus paracasei on stainless steel. Food Control 23:215-220
  33. No AR, Park KS. 2009. Factors that influence biofilm formation in Vibrio parahaemolyticus. Kor J Fish Aquat Sci 42: 456-460
  34. Oguntoyinbo FA, Huch M, Cho GS, Schillinger U, Holzapfel W, Sanni A, Franz CM. 2010. Diversity of Bacillus species isolated from okpehe, a traditional fermented soup condiment from Nigeria. J Food Prot 73:870-878 https://doi.org/10.4315/0362-028X-73.5.870
  35. Park SK, Ko YD, Kwon SH, Shon MY, Lee SW. 2003. Occurrence of off-odor and distribution of thermophilic bacteria from rice and cooked rice stored at electric rice cooker. Korean J Food Preservation 10:70-74
  36. Park SY, LEE JK. 2004. Bacterial quorum sensing and antiquorum sensing. J Microbiol Biotechnol 32:1-10
  37. Richard K, Sammer AB, Oliver G, Reto L, Michael O, Marcus T, Regine L. 2009. Furanone at subinhibitory concentrations enhances staphylococcal biofilm formation by luxS repression. Antimicrob Agents Chemother 53:4159-4166 https://doi.org/10.1128/AAC.01704-08
  38. Ryu JH, Beuchat LR. 2005. Biofilm formation and spourulation Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer. J Food Prot 68:2614-2622 https://doi.org/10.4315/0362-028X-68.12.2614
  39. Seki T, Chung CK, Mikami H, Oshima Y. 1978. Deoxyribonucleic acid homology and taxonomy of the genus Bacillus. Int J Syst Bacteriol 28:182-189 https://doi.org/10.1099/00207713-28-2-182
  40. Seong CN, Baik KS, Chun YM, Kim JK, Kim JH. 1998. Distribution and properties of microorganisms in soil of representative vegetation of Mt. Nam. Korean J Ecol 21: 703-712
  41. Simoes LC, Lemos M, Araújo P, Pereira AM, Simoes M. 2011. The effects of glutaraldehyde on the control of single and dual biofilms of Bacillus cereus and Pseudomonas fluorescens. J of Biofouling 24:337-346
  42. Simoes M, Simoes LC, Vieira MJ. 2009. Species association increases biofilm resistance to chemical and mechanical treatments. Water Res 43:229-237 https://doi.org/10.1016/j.watres.2008.10.010
  43. Suh JS, Noh HJ, Kwon JS, Weon HY, Hong SY. 2010. Distribution map of microbial diversity in agricultural land. Korean J Soil Sci Fert 43:995-1001
  44. Weber DJ, Saviteer SM, Rutala WA, Thomann CA. 1988. In vitro susceptibility of Bacillus spp. to selected antimicrobial agents. Antimicrob Agents Chemother 32:642-645 https://doi.org/10.1128/AAC.32.5.642
  45. Wijman JG, De Leeuw PP, Moezelaar R, Zwietering MH, Abee T. 2007. Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl Environ Microbiol 73:1481-1488 https://doi.org/10.1128/AEM.01781-06
  46. Yamada S, Ohashi E, Agata N, Venkateswaran K. 1999. Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringeinsis, B. mycoides, and B. anthracis and Their application to the detection of B. cereus in rice. Appl Environ Microbiol 65:1483-1490

Cited by

  1. Bacillus cereus and Bacillus thuringiensis spores in Korean rice: Prevalence and toxin production as affected by production area and degree of milling vol.42, 2014, https://doi.org/10.1016/j.fm.2014.02.021
  2. Bacterial Biocontrol of Sprouts through Ethanol and Organic Acids vol.25, pp.1, 2012, https://doi.org/10.9799/ksfan.2012.25.1.149
  3. 천연물 성분을 이용한 환경 유해미생물의 biofilm 생성 저해능 비교에 관한 연구 vol.28, pp.2, 2011, https://doi.org/10.5322/jesi.2019.28.2.225
  4. 압출떡의 유통기한 연장을 위한 LED 조사의 Bacillus cereus 억제 효과 및 LED의 배열에 따른 빛의 조사 패턴 시뮬레이션 vol.62, pp.2, 2011, https://doi.org/10.3839/jabc.2019.025
  5. Biofilm Formation Characteristics of Major Foodborne Pathogens on Polyethylene and Stainless Steel Surfaces vol.35, pp.2, 2011, https://doi.org/10.13103/jfhs.2020.35.2.195