DOI QR코드

DOI QR Code

Degradation Kinetics of Anthocyanin Pigment Solutions from Purple-fleshed Sweet Potato Cultivars

자색고구마 품종별 안토시아닌 색소의 분해에 대한 속도론적 연구

  • Park, Jeong-Seob (Jeonbuk Agriculture & Food Academy, Jeonbuk Provincial Government) ;
  • Bae, Jae-O (Dept. of Food Science & Technology, Graduate School, Chonbuk National University) ;
  • Chung, Bong-Woo (Dept. of Bioprocess Engineering, Graduate School, Chonbuk National University) ;
  • Jung, Mun-Yhung (Dept. of Food Science and Culinary Arts, Woosuk University) ;
  • Choi, Dong-Seong (Dept. of Food and Biotechnology, Woosuk University)
  • 박정섭 (전라북도 농식품사관학교) ;
  • 배재오 (전북대학교 대학원 식품공학과) ;
  • 정봉우 (전북대학교 대학원 생물공정공학과) ;
  • 정문웅 (우석대학교 외식산업조리학과) ;
  • 최동성 (우석대학교 식품생명공학과)
  • Received : 2011.09.21
  • Accepted : 2011.12.07
  • Published : 2011.12.31

Abstract

The effects of pH and temperature on degradation of anthocyanin in purple-fleshed sweet potato cultivars(Mokpo No.62, Borami, Jami, Sinjami and Ayamurasaki) were determined at pH ranges of 1 to 5 and temperature ranges of 20 to $80^{\circ}C$. The anthocyanin contents of five sweet potato varieties were 3.9, 3.8, 4.7, 4.1, 4.2 mg/g of dried sweet potato, respectively. Degradations of anthocyanins at different pHs and temperatures followed the first-order reaction. Our results clearly showed that the anthocyanin stability of purple-fleshed sweet potato was dependent on the source of the sweet potato cultivars. Anthocyanin obtained from Borami showed the highest stability. The half-life of antocyanin degradation of purple sweet potato cultivars(Mokpo No.62, Borami, Jami, Sinjami and Ayamurasaki) at pH 3 were 22.2, 28.3, 26.3, 23.4, 22.7 days at $60^{\circ}C$, respectively. A significant decrease in anthocyanin stability was observed at temperatures above $40^{\circ}C$. Activation energies of purple-fleshed sweet potato cultivars at different temperatures were 54.67, 60.93, 71.73, 59.35, 62.28 kJ/mol, respectively.

국내에서 재배되는 목포 62호, 보라미, 자미, 신자미, 아야무라사키의 자색고구마 품종에 대해 안토시아닌 함량 및 pH에 따른 적색도, pH와 가열온도에 따른 안정성을 평가하였다. 그 결과, 안토시아닌 함량은 각 3.9, 3.8, 4.7, 4.1, 4.2 mg/g dry weight로 자미가 가장 높았으며, pH에 따른 a 값은 pH 3 에서 20.2, 59.3, 41.4, 37.7, 26.9로 보라미가 가장 높았다. pH에 따른 품종별 안토시아닌 색소의 반감기는 pH 3에서 22.2, 28.3, 26.3, 23.4, 22.7일로 보라미가 가장 안정하였다. 그리고 온도에 따른 품종별 안토시아닌 색소의 반감기는 온도가 낮을수록 증가하여 안정하였으며, 특히 자미는 $20^{\circ}C$에서 401일로 매우 높은 안정성을 나타냈다. 또한 가열온도에 따른 활성화에너지는 54.67, 60.93, 71.73, 59.35, 62.28 kJ/mol로 자미가 가장 높았다.

Keywords

References

  1. Askar A. 1993. Natural colors for the food industry-an overview. Fruit Process 3:400-403
  2. Cartwright RA. 1983. Historical and modern epidemiological studies on populations exposed to N-substituted aryl compounds. Environ Health Perspect 49:13-19 https://doi.org/10.1289/ehp.834913
  3. Cemeroglu B, Velioglu S, Isik S. 1994. Degradation kinetics of anthocyanins in sour cherry juice and concentrate. J Food Sci 59:1216-1218 https://doi.org/10.1111/j.1365-2621.1994.tb14680.x
  4. Cevallos-Casals BA, Cisneros-Zevallos L. 2003. Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweetpotato. J Agric Food Chem 51:3313-3319 https://doi.org/10.1021/jf034109c
  5. Francis FJ. 1989. Food colorants: Anthocyanins. Crit Rev Food Sci Nutr 20:273-314
  6. Garzon GA, Wrolstad RE. 2002. Comparison of the stability of pelargonidin-based anthocyanins in strawberry juice and concentrate. J Food Sci 67:1288-99 https://doi.org/10.1111/j.1365-2621.2002.tb10277.x
  7. Giusti MM, Ronald WE. 2003. Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal 14:217-225 https://doi.org/10.1016/S1369-703X(02)00221-8
  8. Hendry BS. 1996. Natural food colors. In Natural Food Colorants. Hendry GAF, Houghton JD (Eds.), Blackie and Son Ltd., Glasgow, pp.39-78
  9. Jackman RL, Yada RY, Tung MA, Speers RA. 1987. Anthocyain as food colorants-a review. J Food Biochem 11:201-247 https://doi.org/10.1111/j.1745-4514.1987.tb00123.x
  10. Janna OA, Khairul AK, Maziah M. 2007. Anthocyanin stability studies in Tibouchina semidecandra L. Food Chem 101: 1640-1646 https://doi.org/10.1016/j.foodchem.2006.04.034
  11. Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F. 2005. Antioxidative activity of anthocyanins from purple sweet potato, Ipomorea batatas cultivar Ayamurasaki. Biosci Biotechnol Biochem 69:979-988 https://doi.org/10.1271/bbb.69.979
  12. Keppler K, Humpf HU. 2005. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg Med Chem 13:5195-5205 https://doi.org/10.1016/j.bmc.2005.05.003
  13. Kirca A, Cemeroglu B. 2003. Degradation kinetics of anthocyanins in blood orange juice and concentrate. Food Chem 81:583- 587 https://doi.org/10.1016/S0308-8146(02)00500-9
  14. Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R. 2003. Analysis and biological activities of anthocyanins. Phytochem 64:923-933 https://doi.org/10.1016/S0031-9422(03)00438-2
  15. Markakis P. 1974. Anthocyanins and their stability in foods. CRC Crit Rev Food Technol 4:437-456 https://doi.org/10.1080/10408397409527165
  16. Markakis P. 1982. Stability of anthocyanins in foods. In Anthocyanins as Food Colors, Markakis P(Ed.), Academic Press, New York, pp.163-180
  17. Mazza G, Brouillard R. 1987. Recent developments in the stabilization of anthocyanins in food products. Food Chem 25:207-225
  18. Mazza G, Miniati E. 1993. Anthocyanins in Fruits, Vegetables and Grains. CRC Press, Boca Raton, Florida, pp.1-23
  19. Michal OS. 2009. Does anthocyanin degradation play a significant role in determining pigment concentration in plants?. Plant Sci 177:310-316 https://doi.org/10.1016/j.plantsci.2009.06.015
  20. Newsome RL. 1986. Food colors. Food Technol 40:49-56
  21. Patras A, Brunton NP, Colm O'Donnell, Tiwari BK. 2010. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Tech 21:3-11 https://doi.org/10.1016/j.tifs.2009.07.004
  22. Reyes LF, Cisneros-Zevallos L. 2007. Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes(Solanum tuberosum L.). Food Chem 100: 885-894 https://doi.org/10.1016/j.foodchem.2005.11.002
  23. Rhim JW, Lee JW. 2002. Degradation kinetics of anthocyanins in purple-fleshed sweet potato pigment concentrates and a Japanese plum juice based beverage. Korean J Food Sci Technol 34:238-243
  24. Rhim JW. 2002. Kinetics of thermal degradation of anthocyanin pigment solutions driven from red flower cabbage. Food Sci Biotechnol 11:361-364
  25. Steed LE, Truong VD. 2008. Anthocyanin content, anthioxidant activity, and selected physical properties of flowable purplefleshed sweet potato purees. J Food Sci 73:215-221 https://doi.org/10.1111/j.1750-3841.2008.00774.x
  26. Suda I, Ishikawa F, Hatakeyama M, Miyawaki M, Kudo T, Hirano K, Ito A, Yamakawa O, Horiuchi S. 2008. Intake of purple sweet potato beverage affects on serum hepatic biomarker levels of healthy adult men with borderline hepatitis. Eur J Clin Nutr 62:60-67 https://doi.org/10.1038/sj.ejcn.1602674
  27. Suda Y, Nakabayashi J, Matsuo I, Aizawa S. 1999. Functional equivalency between Otx2 and Otx1 in development of the rostral head. Development 126:743-757
  28. Timberlake CF, Bridle P. 1982. Distribution of anthocyanins in food plants. In Anthocyanins as Food Colors. Markakis P(Ed.), Academic Press, New York, pp.125-162.
  29. Truong VD, Deighton N, Thompson RT, Mcfeeters RF, Dean LO, Pecota KV, Yencho GC. 2010. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweetpotatoes by HPLC-DAD/ESI-MS/MS. J Agric Food Chem 58:404-410 https://doi.org/10.1021/jf902799a
  30. Wu DM, Lu J, Zheng YL, Zhou Z, Shan Q, Ma DF. 2008. Purple sweet potato color repairs D-galactose-induced spatial learning and memory impairment by regulation the expression of synaptic proteins. Neurobiol Learn Mem 90:19-27. https://doi.org/10.1016/j.nlm.2008.01.010
  31. Yoshimoto M. 2001. New trends of processing and use of sweet potato in Japan. Farming Jpn 35:22-28

Cited by

  1. Extraction and Stabilization of Anthocyanin Pigments from Morus alba Fruits vol.57, pp.1, 2014, https://doi.org/10.3839/jabc.2014.005
  2. Physicochemical properties and storage stability of blueberry fermented by lactic acid bacteria vol.22, pp.6, 2015, https://doi.org/10.11002/kjfp.2015.22.6.796
  3. 물리적 처리조건 변화에 따른 아로니아(Aronia melancocarpa) 유래 안토시아닌 함량변화 특성 vol.30, pp.2, 2017, https://doi.org/10.7732/kjpr.2017.30.2.152
  4. 자색당근 첨가가 돈육 햄버거 패티의 품질에 미치는 영향 vol.31, pp.3, 2011, https://doi.org/10.9799/ksfan.2018.31.3.345
  5. ‘Hogammi’, a Sweetpotato Variety for Table Use vol.51, pp.4, 2011, https://doi.org/10.9787/kjbs.2019.51.4.529
  6. A Purple-Fleshed Sweetpotato Variety ‘Danjami’ for Table Use vol.52, pp.1, 2011, https://doi.org/10.9787/kjbs.2020.52.1.53
  7. 고구마 끝순 및 괴근의 안토시아니딘 추출 조건 최적화 vol.52, pp.3, 2011, https://doi.org/10.9721/kjfst.2020.52.3.290
  8. A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat vol.10, pp.9, 2011, https://doi.org/10.3390/antiox10091337