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FILTERS OF MTL-ALGEBRAS BASED ON

VAGUE SET THEORY

Young Sik Park and Chul Hwan Park

Abstract. In this paper, we introduce the concept of a vague filter of

MTL-algebra, and then some related properties are investigated.

1. Introduction

Zadeh[13] introduced the concept of fuzzy set as a new mathematical tool
for dealing with uncertainties, several researches were conducted on the gener-
alization of the notion of fuzzy sets. The idea of “vague set” was first published
by Gau and Buehrer [3], as a generalization of the notion of fuzzy set. Esteva
and Godo[2] introduced a new algebra, called an MTL-algebra, and studied
several basic properties. MTL-algebras are algebraic structures for monoidal
t-norm based logic (MTL), a many-valued propositional calculus that formal-
izes the structure of the real interval [0, 1], induced by a left-continuous t-norm.
They also introduced the notion of filters in MTL-algebras. Zhang [12] stud-
ied further properties of filters in MTL-algebras. Using the vague set, Biswas
[1] studied vague groups. Jun and Park [6, 8] studied vague ideals and vague
deductive systems in subtraction algebras. In this paper, we introduce the
notion of vague filters in MTL-algebras, and then some related properties are
investigated.

2. Preliminaries

In this section, we collect some definition and results that have been used in
the sequel.

Definition 1. ([4]) An algebra (L, ≤, ∧, ∨, �, →, 0, 1) with four binary
operation and two constant is a residuated lattice if it satisfies:

(R1) (L, ≤, ∧, ∨, 0, 1) is a lattice with the least element 0 and the largest
element 1,

(R2) � is a commutative semigroup with the unit element 1,
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(R3) The Galois correspondence holds, that is,

(∀x, y, z ∈ L) (x� y ≤ z ⇐⇒ x ≤ y → z).

Proposition 2.1. ([10]) Let (L, ≤, ∧, ∨, �, →, 0, 1) be a residuated lattice.
Then the following properties hold:

(a1) x ≤ y ⇐⇒ x→ y = 1,
(a2) 0→ x = 1, 1→ x = x, x→ (y → x) = 1,
(a3) y ≤ (y → x)→ x,
(a4) x→ (y → z) = (x� y)→ z = y → (x→ z),
(a5) x→ y ≤ (z → x)→ (z → y), x→ y ≤ (y → z)→ (x→ z),
(a6) y ≤ x ⇒ x→ z ≤ y → z, z → y ≤ z → x,
(a7) (

∨
i∈Γ

yi)→ x =
∧
i∈Γ

(yi → x).

We define x∗ =
∨
{y ∈ L | x� y = 0}, equivalently, x∗ = x→ 0. Then

(a8) 0∗ = 1, 1∗ = 0, x ≤ x∗∗, and x∗ = x∗∗∗.

Definition 2. ([2]) An MTL-algebra is a residuated lattice L = (L, ≤, ∧, ∨,
�, →, 0, 1) satisfying the pre-linearity equation:

(x→ y) ∨ (y → x) = 1.

Proposition 2.2. ([12]) In an MTL-algebra, the following are true :

(a9) x→ (y ∨ z) = (x→ y) ∨ (x→ z),
(a10) x� y ≤ x ∧ y.

Definition 3. ([2]) Let L be an MTL-algebra. A nonempty subset F of L is
called a filter of L if it satisfies

(f1) (∀x, y ∈ F ) (x� y ∈ F ).
(f2) (∀x ∈ F ) (∀y ∈ L) (x ≤ y ⇒ y ∈ F ).

Proposition 2.3. ([2]) Let L be an MTL-algebra, F is a filter of L. Then

(f3) (∀x, y ∈ F ) (x ∧ y ∈ F )

Proposition 2.4. ([12]) A nonempty subset F of an MTL-algebra L is a filter
of L if and only if it satisfies:

(f4) 1 ∈ F.
(f5) (∀x ∈ F ) (∀y ∈ L) (x→ y ∈ F ⇒ y ∈ F ).

Definition 4. ([1]) A vague set A in the universe of discourse U is characterized
by two membership functions given by:

(1) A true membership function

tA : U → [0, 1],

and
(2) A false membership function

fA : U → [0, 1],
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where tA(u) is a lower bound on the grade of membership of u derived from
the “evidence for u”, fA(u) is a lower bound on the negation of u derived from
the “evidence against u”, and

tA(u) + fA(u) ≤ 1.

Thus the grade of membership of u in the vague set A is bounded by a
subinterval [tA(u), 1− fA(u)] of [0, 1]. This indicates that if the actual grade of
membership of u is µ(u), then

tA(u) ≤ µ(u) ≤ 1− fA(u).

The vague set A is written as

A = {〈u, [tA(u), fA(u)]〉 | u ∈ U},

where the interval [tA(u), 1−fA(u)] is called the vague value of u in A, denoted
by VA(u).

For our discussion, we shall use the following notation.

Notations[1]. (1) If I1 = [a1, b1] and I2 = [a2, b2] are two subintervals of
[0, 1], we can define a relation between I1 and I2 by I1 � I2 if and only if
a1 ≥ a2 and b1 ≥ b2.

(2) Let I[0, 1] denote the family of all closed subintervals of [0, 1]. We define
the term “imax” to mean the maximum of two intervals as

imax(I1, I2) := [max(a1, a2),max(b1, b2)],

where I1 = [a1, b1], I2 = [a2, b2] ∈ I[0, 1]. Similarly we define “imin”. The
concepts of “imax” and “imin” could be extended to define “isup” and “iinf”
of infinite number of elements of I[0, 1].

For α, β ∈ [0, 1] we now define (α, β)-cut and α-cut of a vague set.

Definition 5. ([1]) Let A be a vague set of a universe X with the true-
membership function tA and the false-membership function fA. The (α, β)-cut
of the vague set A is a crisp subset A(α,β) of the set X given by

A(α,β) = {x ∈ X | VA(x) � [α, β]}.

Clearly A(0,0) = X. The (α, β)-cuts of the vague set A are also called vague-
cuts of A.

Definition 6. ([1]) The α-cut of the vague set A is a crisp subset Aα of the
set X given by Aα = A(α,α).

Note that A0 = X, and if α ≥ β then Aα ⊆ Aβ and A(α,β) = Aα. Equiva-
lently, we can define the α-cut as Aα = {x ∈ X | tA(x) ≥ α}.
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3. Vague filters

In what follows let L denote an MTL-algebra unless otherwise specified.
We first define the notion of vague filter of MTL-algebra.

Definition 7. A vague set A of L is called a vague filter of L if it satisfies

(vf1) (∀x, y ∈ L) (VA(x� y) � imin{VA(x), VA(y)}),
(vf2) (∀x, y ∈ L) (x ≤ y ⇒ VA(x) � VA(y).

that is,

tA(x� y) ≥ min{tA(x), tA(y)}, 1− fA(x� y) ≥ min{1− fA(x), 1− fA(y)},
and

x ≤ y ⇒ tA(x) ≤ tA(y),
x ≤ y ⇒ 1− fA(x) ≤ 1− fA(y)

for all x, y ∈ L.

We now offer an example of vague filter of L.

Example 8. Let L = {0, a, b, 1} ,where 0 < a < b < 1 be aset with the Caley
tables:

� 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a a b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 b 1 1
1 0 a b 1

Define ∨ and ∧-operation on L as follows:

(∀x, y ∈ L)(x ∨ y = max{x, y} andx ∧ y = min{x, y})
Then L = (L, ≤, ∧, ∨, �, →, 0, 1) is a MTL-algebra.[11] Let A be the vague
set in L defined as follows:

A = {〈0, [0.2, 0.7]〉, 〈a, [0.4, 0.5]〉, 〈b, [0.4, 0.5]〉, 〈1, [0.8, 0.1]〉}.
It is routine to verify that A is a vague filter of L.

We give characterizations of a vague filter.

Theorem 3.1. A vage set A in L is an vague filter of L if and only if it
satisfies

(vf3) (∀x ∈ L) (VA(1) ≥ VA(x)),
(vf4) (∀x, y ∈ L) (VA(y) � imin{VA(x), VA(x→ y)}.

Proof. Suppose that A is a vague filter of L. Since x ≤ 1 for all x ∈ L, it follows
from (vf2) that tA(1) ≥ tA(x) and 1 − fA(1) ≥ 1 − fA(x) for all x ∈ L. This
prove (vf3) hold. Let x, y ∈ L. Since x ≤ (x→ y)→ y, we have x�(x→ y) ≤ y
by the Galois correspondence. Hence

tA(y) ≥ tA(x� (x→ y)) ≥ min{tA(x), tA(x→ y)},
1− fA(y) ≥ 1− fA(x� (x→ y)) ≥ min{1− fA(x), 1− fA(x→ y)}
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by (vf2) and (vf1). This provs (vf4) hold. Conversely,assume that A satisfies
conditions (vf3) and (vf4). Using (a4), we can prove x → (y → (x � y)) =
(x� y)→ (x� y) = 1. So,

tA(x� y) ≥ min{tA(y), tA(y → (x� y))}
≥ min{tA(y), min{tA(x), tA(x→ (y → (x� y)))}}
= min{tA(y), min{tA(x), tA(1)}}
= min{tA(x), tA(y)},

1− fA(x� y) ≥ min{1− fA(y), 1− fA(y → (x� y))}
≥ min{1− fA(y), min{1− fA(x), 1− fA(x→ (y → (x� y)))}}
= min{1− fA(y), min{1− fA(x), 1− fA(1)}}
= min{1− fA(x), 1− fA(y)}.

by (vf3) and (vf4). This proves (vf1) hold. Let x, y ∈ L be such that x ≤ y.
Then x→ y = 1. Then by (vf3) and (vf4), we get

tA(y) ≥ min{tA(x), tA(x→ y)} = min{tA(x), tA(1)} = tA(x),

1−fA(y) ≥ min{1−fA(x), 1−fA(x→ y)} = min{1−fA(x), 1−fA(1)} = 1−fA(x)

This proves (vf2) hold.
�

Theorem 3.2. Let A be a vague filter of L. Then the following are equivalent:

(i) (∀x, y, z ∈ L) (VA(x→ z) � imin{VA(x→ (y → z)), VA(x→ y)},
(ii) (∀x, y ∈ L) (VA(x→ y) � VA(x→ (x→ y)),
(iii) (∀x, y, z ∈ L) (VA((x→ y)→ (x→ z)) � VA(x→ (y → z)).

Proof. (i) ⇒ (ii) Suppose that A satisfies the condition (i). Taking z = y and
y = x in (i) and using (vf3), we have

tA(x→ y) ≥ min{tA(x→ (x→ y)), tA(x→ x)}
= min{tA(x→ (x→ y)), tA(1)}
= tA(x→ (x→ y)),

1− fA(x→ y) ≥ min{1− fA(x→ (x→ y)), 1− fA(x→ x)}
= min{1− fA(x→ (x→ y)), 1− fA(1)}
= 1− fA(x→ (x→ y))

for all x, y, z ∈ L.
(ii) ⇒ (iii) Suppose that A satisfies the condition (ii) and let x, y, z ∈ L.

Since x→ (y → z) ≤ x→ ((x→ y)→ (x→ z)), it follows that

tA((x→ y)→ (x→ z) = tA(x→ ((x→ y)→ z))
≥ tA(x→ (x→ ((x→ y)→ z)))
= tA(x→ ((x→ y)→ (x→ z)))
≥ tA(x→ (y → z)),
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1− fA((x→ y)→ (x→ z) = 1− fA(x→ ((x→ y)→ z))
≥ 1− fA(x→ (x→ ((x→ y)→ z)))
= 1− fA(x→ ((x→ y)→ (x→ z)))
≥ 1− fA(x→ (y → z)).

(iii) ⇒ (i) If A satisfies the condition (iii), then

tA(x→ y) ≥ min{tA((x→ y)→ (x→ z)), tA(x→ y)}
≥ min{tA(x→ (y → z)), tA(x→ y)},

1− fA(x→ y) ≥ min{1− fA((x→ y)→ (x→ z)), 1− fA(x→ y)}
≥ min{1− fA(x→ (y → z)), 1− fA(x→ y)}.

This completes the proof. �

Theorem 3.3. A vague set A in L is a vague filter of L if and only if for
every a, b, c ∈ L with a ≤ b→ c, we have

VA(c) � imin{VA(a), VA(b)}.

Proof. Suppose that A is a vague filter of L. Let a, b, c ∈ L be such that a ≤ b→
c. Since a ≤ b→ c, we have tA(a) ≤ tA(b→ c) and 1− fA(a) ≥ 1− fA(b→ c),
and so

tA(c) ≥ min{tA(b), tA(b→ c)} ≥ min{tA(b), tA(a)},
1− fA(c) ≥ min{1− fA(b), 1− fA(b→ c)} ≥ min{1− fA(b), 1− fA(a)}

Therefore VA(c) � imin{VA(a), VA(b)}. Conversely, suppose that VA(c) ≥ min{VA(a), VA(b)}.
Since x ≤ x→ 1 for all x ∈ L, we get

tA(1) ≥ min{tA(x), tA(x)} = tA(x),

1− fA(1) ≥ min{1− fA(x), 1− fA(x)} = 1− fA(x)

for all x ∈ L. This proves VA(1) ≥ VA(x) hold. Since x → y ≤ x → y for all
x, y ∈ L, we get

tA(y) ≥ min{tA(x), tA(x→ y)},
1− fA(y) ≥ min{1− fA(x), 1− fA(x→ y)}

for all x, y ∈ L. This proves VA(y) � imin{VA(x), VA(x→ y)} hold. Therefore
A is a vague filter of L. �

Theorem 3.4. Let A be a vague filter of L. Then for any α, β ∈ [0, 1], the
vague-cut A(α,β) of L is a crisp filter of L.

Proof. Assume that A is a vague filter. Obviously, 1 ∈ A(α,β). Let x, y ∈ L
be such that x ∈ A(α,β) and x → y ∈ A(α,β). Then VA(x) � [α, β], i.e.,
tA(x) ≥ α and 1− fA(x) ≥ β; and VA(x→ y) � [α, β], i.e., tA(x→ y) ≥ α and
1− fA(x→ y) ≥ β. It follows from (vf4) that

tA(y) ≥ min{tA(x), tA(x→ y)} ≥ α
and

1− fA(y) ≥ min{1− fA(y), 1− fA(x→ y)} ≥ β
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so that VA(y) � [α, β]. Hence y ∈ A(α,β). Therefore A(α,β) is a filter of L. �

The filters like A(α,β) are also called vague-cut filters of X.

Definition 9. ([1, 3]) If A is a vague set of L and θ is a map from L into itself,

we define a maps tA
θ : L→ [0, 1] and fA

θ : L→ [0, 1] given by, respectively,

(1) (∀x ∈ L) tA
θ(x) = tA(θ(x)) and

(2) (∀x ∈ L) fA
θ(x) = fA(θ(x)).

In such case we write VA
θ(x) = VA(θ(x)) for all x ∈ L.

Theorem 3.5. If A is a vague filter of L and θ is a homomorphism of L, then
the vague set Aθ of X given by

Aθ = {〈x, [tAθ(x), tA
θ(x)]〉 | x ∈ L},

is also a vague filter of L.

Proof. For every x, y ∈ L we have

tA
θ(x� y) = tA(θ(x� y)) = tA(θ(x)� θ(y))

≥ min{tA(θ(x)), tA(θ(y))}
= min{tAθ(x)), tA

θ(y))}
and

1− fAθ(x� y) = 1− fA(θ(x� y)) = 1− fA(θ(x)� θ(y))

≥ min{1− fA(θ(x)), 1− fA(θ(y))}
= min{1− fAθ(x)), 1− fAθ(y))}

Also, let x ≤ y we have

tA
θ(x) = tA(θ(x) ≤ tA(θ(y) = tA

θ(y)

and

1− fAθ(x) = 1− fA(θ(x) ≤ 1− fA(θ(y) = 1− fAθ(y)

Therefore Aθ is an vague filter of L. �

Theorem 3.6. If A is a vague filter of L, then the set

Ωa := {x ∈ L | VA(x) ≥ VA(a)}
is a filter of L for every a ∈ L.

Proof. Since VA(1) ≥ VA(x) for all x ∈ L. we have 1 ∈ Ωa. Let x, y ∈ L be
such that x ∈ Ωa and x→ y ∈ Ωa. Then tA(x) ≥ tA(a), 1− fA(x) ≥ 1− fA(a),
tA(x→ y) ≥ tA(a) and 1− fA(x→ y) ≥ 1− fA(a). Since A is a vague filter of
L, it follows from (vf4) that

tA(y) ≥ min{tA(x), tA(x→ y)} ≥ tA(a),

1− fA(y) ≥ min{1− fA(x), 1− fA(x→ y)} ≥ 1− fA(a)

so that y ∈ Ωa. Hence Ωa is a filter of L. �
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Theorem 3.7. Let a ∈ L and let A be a vague set in L. Then

(i) If Ωa is a filter of L, then A satisfies the following implications:

VA(a) � imin{VA(x→ y), VA(x)} ⇒ VA(a) � VA(y)−−− (∗)
for all x, y ∈ L.

(ii) If A satisfies ((vf3) and (*), then Ωa is a filter of L.

Proof. (i) Assume that Ωa is a filter of L. Let x, y ∈ L be such that VA(a) �
imin{VA(x → y), VA(x)} Then x → y ∈ Ωa and x ∈ Ωa. Using (f4), we get
y ∈ Ωa. Threfore VA(y) � VA(a).

(ii) Suppose that A satisfies (vf3) and (*). From (vf3) it follows that 1 ∈ Ωa.
Let x, y ∈ L be such that x ∈ Ωa and x → y ∈ Ωa. Then VA(a) � VA(x) and
VA(a) � VA(x→ y). This means that VA(a) � imin{VA(x), VA(x→ y)}. Thus
VA(a) � VA(y) by (*). So y ∈ Ωa. Therefore Ωa is a filter of L. �
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