DOI QR코드

DOI QR Code

Atg3-Mediated Lipidation of Atg8 Is Involved in Encystation of Acanthamoeba

  • Moon, Eun-Kyung (Department of Parasitology, Kyungpook National University School of Medicine) ;
  • Chung, Dong-Il (Department of Parasitology, Kyungpook National University School of Medicine) ;
  • Hong, Yeon-Chul (Department of Parasitology, Kyungpook National University School of Medicine) ;
  • Kong, Hyun-Hee (Department of Parasitology, Kyungpook National University School of Medicine)
  • Received : 2010.11.19
  • Accepted : 2011.02.18
  • Published : 2011.06.30

Abstract

Autophagy is a catabolic process involved in the degradation of a cell's own components for cell growth, development, homeostasis, and the recycling of cellular products. Autophagosome is an essential component in the protozoan parasite during differentiation and encystation. The present study identified and characterized autophagy-related protein (Atg) 3, a member of Atg8 conjugation system, in Acanthamoeba castellanii (AcAtg3). AcAtg3 encoding a 304 amino acid protein showed high similarity with the catalytic cysteine site of other E2 like enzymes of ubiquitin system. Predicted 3D structure of AcAtg3 revealed a hammer-like shape, which is the characteristic structure of E2-like enzymes. The expression level of AcAtg3 did not increase during encystation. However, the formation of mature cysts was significantly reduced in Atg3-siRNA transfected cells in which the production of Atg8-phosphatidylethanolamine conjugate was inhibited. Fluorescent microscopic analysis revealed that dispersed AcAtg3-EGFP fusion protein gathered around autophagosomal membranes during encystation. These results provide important information for understanding autophagic machinery through the lipidation reaction mediated by Atg3 in Acanthamoeba.

Keywords

References

  1. Martinez AJ. Free-living Amoebas: Natural History, Prevention, Diagnosis, Pathology and Treatment of Disease. Boca Raton, Florida, USA. CRC Press. 1985, p 5-42.
  2. Picazarri K, Nakada-Tsukui K, Nozaki T. Autophagy during proliferation and encystation in the protozoan parasite Entamoeba invadens. Infect Immun 2008; 76: 278-288. https://doi.org/10.1128/IAI.00636-07
  3. Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ 2005; 12: 1542-1552. https://doi.org/10.1038/sj.cdd.4401765
  4. Huang WP, Klionsky DJ. Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct 2002; 27: 409-420. https://doi.org/10.1247/csf.27.409
  5. Ohsumi Y, Mizushima N. Two ubiquitin-like conjugation systems essential for autophagy. Semin Cell Dev Biol 2004; 15: 231-236. https://doi.org/10.1016/j.semcdb.2003.12.004
  6. Geng J, Klionsky DJ. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep 2008; 9: 859-864. https://doi.org/10.1038/embor.2008.163
  7. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6: 463-477. https://doi.org/10.1016/S1534-5807(04)00099-1
  8. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 2000; 151: 263-276. https://doi.org/10.1083/jcb.151.2.263
  9. Ichimura Y, Imamura Y, Emoto K, Umeda M, Noda T, Ohsumi Y. In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J Biol Chem 2004; 279: 40584-40592. https://doi.org/10.1074/jbc.M405860200
  10. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y. A ubiquitin-like system mediates protein lipidation. Nature 2000; 408: 488-492. https://doi.org/10.1038/35044114
  11. Koopmann R, Muhammad K, Perbandt M, Betzel C, Duszenko M. Trypanosoma brucei ATG8: structural insights into autophagic-like mechanisms in protozoa. Autophagy 2009; 5: 1085-1091. https://doi.org/10.4161/auto.5.8.9611
  12. Besteiro S, Williams RA, Morrison LS, Coombs GH, Mottram JC. Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major. J Biol Chem 2006; 281: 11384-11396. https://doi.org/10.1074/jbc.M512307200
  13. Otto GP, Wu MY, Kazgan N, Anderson OR, Kessin RH. Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J Biol Chem 2003; 278: 17636-17645. https://doi.org/10.1074/jbc.M212467200
  14. Moon EK, Chung DI, Hong YC, Kong HH. Autophagy protein 8 mediating autophagosome in encysting Acanthamoeba. Mol Biochem Parasitol 2009; 168: 43-48. https://doi.org/10.1016/j.molbiopara.2009.06.005
  15. Bowers B, Korn ED. The fine structure of Acanthamoeba castellanii (Neff strain). II. Encystment. J Cell Biol 1969; 41: 786-805. https://doi.org/10.1083/jcb.41.3.786
  16. Kong HH, Pollard TD. Intracellular localization and dynamics of myosin-II and myosin-IC in live Acanthamoeba by transient transfection of EGFP fusion proteins. J Cell Sci 2002; 115: 4993-5002. https://doi.org/10.1242/jcs.00159
  17. Seglen PO, Bohley P. Autophagy and other vacuolar protein degradation mechanisms. Experientia 1992; 48: 158-172. https://doi.org/10.1007/BF01923509
  18. Yamada Y, Suzuki NN, Hanada T, Ichimura Y, Kumeta H, Fujioka Y, Ohsumi Y, Inagaki F. The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J Biol Chem 2007; 282: 8036-8043. https://doi.org/10.1074/jbc.M611473200
  19. Winn PJ, Religa TL, Battey JN, Banerjee A, Wade RC. Determinants of functionality in the ubiquitin conjugating enzyme family. Structure 2004; 12: 1563-1574. https://doi.org/10.1016/j.str.2004.06.017
  20. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 2007; 282: 37298-37302. https://doi.org/10.1074/jbc.C700195200
  21. Umemiya-Shirafuji R, Matsuo T, Liao M, Boldbaatar D, Battur B, Suzuki H, Fujisaki K. Increased expression of ATG genes during nonfeeding periods in the tick Haemaphysalis longicornis. Autophagy 2010; 6: 473-481. https://doi.org/10.4161/auto.6.4.11668

Cited by

  1. Microarray Analysis of Differentially Expressed Genes between Cysts and Trophozoites of Acanthamoeba castellanii vol.49, pp.4, 2011, https://doi.org/10.3347/kjp.2011.49.4.341
  2. Cysteine protease involving in autophagosomal degradation of mitochondria during encystation of Acanthamoeba vol.185, pp.2, 2011, https://doi.org/10.1016/j.molbiopara.2012.07.008
  3. Protein kinase C signaling molecules regulate encystation of Acanthamoeba vol.132, pp.4, 2011, https://doi.org/10.1016/j.exppara.2012.07.008
  4. Identification of Atg8 Isoform in Encysting Acanthamoeba vol.51, pp.5, 2011, https://doi.org/10.3347/kjp.2013.51.5.497
  5. Atg8 is involved in endosomal and phagosomal acidification in the parasitic protist E ntamoeba histolytica vol.17, pp.10, 2011, https://doi.org/10.1111/cmi.12453
  6. Autophagy protein 12 plays an essential role in Acanthamoeba encystation vol.159, pp.None, 2011, https://doi.org/10.1016/j.exppara.2015.08.013
  7. Identification and ultrastructural characterization of Acanthamoeba bacterial endocytobionts belonging to the Alphaproteobacteria class vol.13, pp.10, 2011, https://doi.org/10.1371/journal.pone.0204732
  8. Transcriptomic changes across the life cycle of Trypanosoma cruzi II vol.8, pp.None, 2020, https://doi.org/10.7717/peerj.8947
  9. Whole Organism Model to Study Molecular Mechanisms of Differentiation and Dedifferentiation vol.9, pp.4, 2011, https://doi.org/10.3390/biology9040079
  10. The role of the Acanthamoeba castellanii Sir2-like protein in the growth and encystation of Acanthamoeba vol.13, pp.1, 2011, https://doi.org/10.1186/s13071-020-04237-5
  11. Peganum harmala Extract Has Antiamoebic Activity to Acanthamoeba triangularis Trophozoites and Changes Expression of Autophagy-Related Genes vol.10, pp.7, 2021, https://doi.org/10.3390/pathogens10070842
  12. Amoebicidal activity of Cassia angustifolia extract and its effect on Acanthamoeba triangularis autophagy-related gene expression at the transcriptional level vol.148, pp.9, 2011, https://doi.org/10.1017/s0031182021000718