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Key Agreement Protocol Using Sylvester Hadamard
Matrices

Chang-hui Choe and Moon Ho Lee

Abstract: In this paper, we propose a key agreement protocol using
Sylvester Hadamard matrices. Users obtain their common key by
using a matrix shared in advance. Matrix construction is very sim-
ple, and the computation is quite fast. The proposal will be useful
for communication between two users, especially for those having
low computing power.

Index Terms: Co-cycle, Hadamard matrix, key agreement.

I. INTRODUCTION

When two users Uy and U, want to share a common key, U
can make and send a secret key to U that is encrypted by Us’s
public key, and U; can receive and decrypt the key. They now
share the same key. In this case, the common key is generated
by U only, and they should use an expensive public key cryp-
tographic method.

Key agreement methods using a certain pattern of a Jacket
matrix, which is co-cyclic, have been proposed [1], [2]. In this
paper, we propose a key agreement scheme using Sylvester
Hadamard matrices, which is simpler than those in [1], [2]. We
will show that Sylvester Hadamard matrices are co-cyclic and
propose our protocol. Then, we will present the steps of the key
agreement and a brief security analysis.

II. SYLVESTER HADAMARD MATRICES AND
CO-CYCLES

2™ x 2" Sylvester Hadamard matrix Hg» can be defined as
follows.

Hgn = HQn—l ® HQ, for n Z 2,

Haz[jj] ()

where A ® B is the Kronecker product of A and B, defined as
follows for a p x ¢ matrix A.

a1l B Q1q B
AgB=| : - |. @)
ap1 B ape B

Manuscript received February 5, 2010; approved for publication by Emanuele
Viterbo, Division I Editor, October 5, 2010.

This work was supported by the World Class University (WCU) program
(R32-2008-000-20014-0) and the Fundamental Research (FR) program (2010-
0020942) through the National Research Foundation of Korea.

M. H. Lee is the corresponding author.

The authors are with the Department of Electronic Engineering, Chonbuk
National University, Jeonju, 561-756, Republic of Korea, email: {nblue95,
moonho } @jbnu.ac.kr.

Also Hyn can be represented as [3]
va?be {071727"'72n - 1}7 H(a,b) = (Al)m’b) (3)

where a and b are the row and column indices, respectively, of
Hyn starting from O (not from 1), H,p) is the entry of Hon
located in row @ and column b, and {a, b) is the inner product of
a and b, i.e.,

a = (An-1,0n-2," " ,00),

b= (bn—la bn—2a e 7b0)7
n—1

(@,b) =" ambm. ©)
m=0

With (3), we can directly obtain an element of a Sylvester
Hadamard matrix without generating or storing the entire ma-
trix. For example, the entry located in the second row (a = 1)
and the third column (b = 2) is

Hgg = (-1 =1, (5)

Moreover, we do not need to perform any exponential opera-
tion to calculate (3), since the base is —1. If {a, b) is odd, (3) is
—1, otherwise it is 1.

Let G be a finite group of order v and C be a finite abelian
group of order w. A co-cycle is a mapping ¢ : G x G — C with
some operation o, satisfying the co-cyclic equation.

(g, h)p(goh. k) = ¢(g,hok)p(h.k), Vg, h ke,
©0(9,0)0(0,h) =1, Vg,hedq. (6)

Then, the co-cycle ¢ over (G is naturally presented as a co-
cyclic matrix M. Itis a v X v matrix whose rows and columns
are indexed by the elements of G, such that the entry in row g
and column h is ¢(g, ).

If o(g,h) = @(h,g), then M, is symmetric and for a co-
cyclic function ¢(),

@(g,h)p(goh k) = o(h,k)p(hok,g)
ok, g)p(k o g, h). (7
In this paper, we define the operation o with Sylvester
Hadamard matrices as bitwise XOR.
Theorem 1: Sylvester Hadamard matrices are co-cyclic.
Proof: From (3) and (6),
(g, h)p(goh, k) = (—1)lohitioonk), )
p(h,k)p(hok,g) = (—1)mkIHahok) )

We show that (8) and (9) are the same to prove the theorem.
In (8) and (9), the bases are —1, and the result of calculation
does note change if all additions (“+”) are changed into mod 2
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additions (“®”), i.e., bitwise XOR is realized. From (4), the ex-
ponents of (8) and (9) can be expressed as follows, respectively.

(9. M)®(g o h, k)
=(goho ® - @ gn-1hn_1)
S (90D ho)ko® - ® (gn-1® hp—1) kn—1)
=(goho ® hoko © kogo)
® - B (gn—1hn-1 ® hp-1kn-1 ® kn_1gn-1)
-1
ZZ {gih; @ hik; @ kyg;) .
=0
(h,k)®{g,hok)
=(hoko® - & hp—1kn_1)
S (go(hoD ko) @ @ gn-1(hn1®kn-1))
=(hoko © kogo ® goho)
&P (hﬂ,,,. thn-1 P kn1gn1® gn—lh/n—l)

n--1

:Z (gihs @ hik; ® kigs) .
=0

(10)

(11)

From (10) and (11), (8) and (9) are the same, and Theorem 1
has been proven. a

1HII. KEY AGREEMENT PROTOCOL USING
SYLVESTER HADAMARD MATRICES

Two users A and B want to share a common key for secure
communication on public channels. A trusted authority (TA)
shares secret keys Kas and Kpg with A and B, respectively. Af-
ter key agreement, A and B share a session key Ksp. A, B, and
the TA share n; i.e., they agree in advance to use the same ma-
trix for this key agreement. Users can share a m bit session key
with a 2™ x 2" Sylvester Hadamard matrix and N bit numbers
g, h, and k that can be divided into m numbers of n bits such
as g = (90,91, * "y gm-1), where N = mn. The key agreement
process, shown in Fig, 1, is as follows.

1) A randomly generates g, encrypts it with K g, and sends the
encrypted message to the TA.
2) The TA randomly generates h, encrypts it with K55 and Kps,

and sends the encrypted messages to B with g o h.

3) B randomly generates & and obtains g from goh and h. Then,
from (6), B can calculate

Kag = Kag, || || Kas,,_,
= @ (ho, ko) ¢ (g0, ho o ko) ||- - |
2 (hm-—la km—l) w (gm-—la Bt © km—-l) .(12)
Thereafter B encrypts g with Kp, and sends it and the mes-

sage from the TA that is encrypted by Kags to A with h o k.
4) A obtains k from hok and k. Then, from (6), A can calculate

Kap = KABOH' ’ -iiKABm—l
= ¢ (ho, ko) ¢ (g0, ho © ko) ||- - -|]
%) (hm»ly km—l) 2 (gm—l; hm—l o km—l) - (13)
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Fig. 1. Proposed key agreement protocol.

Thereafter A decrypts g with Kap for confirmation, encrypts
k with K,p and sends it to B. B decrypts k with Kp for
confirmation.

From (6), (12) and (13) are guaranteed to be the same.

IV. SECURITY ANALYSIS

In the proposed protocol, key authentication for A and B
is provided, since the protocol is based on symmetric ciphers.
Also, since A and B randomly generate g and k, respectively,
and they can confirm each other’s session keys in steps 3) and
4) of the key agreement, key freshness and key confirmation are
provided.

During the key agreement, only g o i and h o k are not en-
crypted. Thus, nobody other than the TA, A, and B can obtain
one of g, h, or k without revealing Kas or Kpg. We present
the simplest example: Let N = m = n = 1.Ifgoh =1
and h o k = 0, then there are two cases of g, h, and k such
that (g, h, k) = (1,0,0) or (g,h, k) = (0,1,1),and g, h, and k&
cannot be determined without additional information.

Theorem 2: The probability of every possible m bit session
key in the proposed protocol is always 1/2™; i.e., the probability
that any segment of an agreed key is 1 (or —1) is 1/2.

Proof: From (3) and (7),¥i € {0,1,---,m — 1},

Kas, = ¢ (gi,hi) ¢ (gi o hiy ki)
— (-1)(91»’%)(..1)(91’01‘&@',9«5)
- (_1)(9:’,,}1@‘)’?—(91‘0’1@79&)' (14)
In (14), the base is —1, and the result of calculation is the
same if all additions (*+”) are changed into mod 2 additions
(“@"), i.e., bitwise XOR is realized. Hereafter, we use g, A,
and k instead of g;, h;, and k;, respectively, and consider
their binary expression, such as g = (go, 91, -, gn—1) Where
vie {0,1,---,n—1},9; € {0,1}.
Then, from the proof of Theorem 1, the exponent of (14) be-
comes the following.
n—1
(g.h) @ (goh, k)= (gihi & hiki ® kugn) -
=0

15)

Foreachl,let X; = gihi D hjk; Dk g;. There are four possible
cases. If all of g;, by and k; are 1, X; = 1. In contrast, if all of
them are O {(i.e., none of them are 1), X; = 0. Each of these
two cases has one possibility. If two of them are 1, X; = 1.
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In contrast, if exactly two of them are 0 (i.e., only one of them
is 1), X; = 0. Each of these two cases has three possibilities.
Therefore, the probability of X; = 1 is 1/2. Also, the same is
true of X; = 0. Thus, each X, has the same probabilities of 0
and I, and (15) does as well. Then, for each ¢, the probability
that (14) is 1 is 1/2, and Theorem 2 has been proven. O

From Theorem 2, we can find that each Kp, has the same
probability of 1 and -1, even though the number of 1’s and that
of 0’s in a Sylvester Hadamard matrix are different (for example,
select a4 x 4 (i.e., n = 2) Sylvester Hadamard matrix to share
a 1 bit session key. Then, the number of 1’s in Hy: is 10, the
number of 0’s is 6, and there are a total of 64 cases of [g, h, k].
Accordingly, there are 64 cases of the session key, and in 32
(half] of them, the key is 1). This property means that every
possible key in the proposed protocol has the same probability,
and the generated session keys are probabilistically secure.

V. CONCLUSION

In this paper, we proposed a key agreement protocol us-
ing Sylvester Hadamard matrices. This protocol allows users to
share a common session key without using conventional public
key ciphers. To do this, no exponential operation is needed; only
bitwise addition, multiplication and XOR. Furthermore, users
do not need to compute and keep all of the matrix entries be-
cause they can directly obtain each entry they need by using
(3). Moreover, the risk of leakage of secret information is min-
imized, since only incomplete information used for key genera-
tion is shared.

The computation time of this key agreement is proportional
to N = mn where m is the length of the common key that the
users agree to use, and n is the factor that determines the size of
the Sylvester Hadamard matrix that they share in advance. It is
difficult for an eavesdropper to guess promising keys, since the
probabilities of all possible keys are the same.
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