References
- R. P. Agarwal and D. Oregan, A survey of recent fixed point theory in Frechet spaces, Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday. Vol. 1, 2, 75-88, Kluwer Acad. Publ., Dordrecht, 2003,
- J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin Heidelberg, 1984.
- D. Azzam-Laouir, Mixed semicontinuous perturbation of a second order nonconvex sweeping process, Electron. J. Qual. Theory Differ. Equ. 2008 (2008), no. 37, 1-9.
- H. Benabdellah, C. Castaing, A. Salvadori, and A. Syam, Nonconvex sweeping process, J. Appl. Anal. 2 (1996), no. 2, 217-240. https://doi.org/10.1515/JAA.1996.217
- M. Bounkhel, General existence results for second order nonconvex sweeping process with unbounded perturbations, Port. Math. (N.S.) 60 (2003), no. 3, 269-304.
- M. Bounkhel and D. Laouir-Azzam, Existence results on the second-order nonconvex sweeping process with perturbations, Set-Valued Var. Anal. 12 (2004), no. 3, 291-318. https://doi.org/10.1023/B:SVAN.0000031356.03559.91
- M. Bounkhel and L. Thibault, Nonconvex sweeping process and prox-regularity in Hilbert space, J. Nonlinear Convex Anal. 6 (2005), no. 2, 359-374.
- M. Bounkhel and M. Yarou, Existence results for first and second order nonconvex sweeping process with delay, Port. Math. (N.S.) 61 (2004), no. 2, 207-230.
- C. Castaing, Quelques problemes d'evolution du second ordre, Seminaire d'Analyse Convexe, Vol. 18 (Montpellier, 1988), Exp. No. 5, 18 pp., Univ. Sci. Tech. Languedoc, Montpellier, 1988,
- C. Castaing and M. D. P. Monteiro Marques, Topological properties of solution sets for sweeping process with delay, Port. Math. 54 (1997), no. 4, 485-507.
- C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- C. Castaing, M. Valadier, and T. X. Ducha, Evolution equations governed by the sweeping process, Set-Valued Var. Anal. 1 (1993), no. 2, 109-139. https://doi.org/10.1007/BF01027688
-
F. H. Clarke, R. J. Stern, and P. R. Wolenski, Proximal smoothness and the lower
$C^2$ property, J. Convex Anal. 2 (1995), no. 1-2, 117-144. - K. Deimling, Multivalued Differential Equations, De Gruyter Series in Non linear Analysis and Applications, Walter de Gruyter, Berlin, New York, 1992.
- T. X. Duc Ha and M. D. P. Monteiro-Marques, Nonconvex second-order differential inclusions with memory, Set-Valued Var. Anal. 3 (1995), no. 1, 71-86. https://doi.org/10.1007/BF01033642
- J. F. Edmond, Delay perturbed sweeping process, Set-Valued Var. Anal. 14 (2006), no. 3, 295-317. https://doi.org/10.1007/s11228-006-0021-9
- T. Haddad and L. Thibault, Mixed semicontinuous perturbations of nonconvex sweeping process, Math. Program. 123 (2010), no. 1, Ser. B, 225-240. https://doi.org/10.1007/s10107-009-0315-4
- M. D. P. Monteiro Marques, Differential inclusions in nonsmooth mechanical problems, Shocks and dry friction. Progress in Nonlinear Differential Equations and their Applications, 9. Birkhauser Verlag, Basel, 1993.
- J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations 26 (1977), no. 3, 347-374. https://doi.org/10.1016/0022-0396(77)90085-7
- J. J. Moreau, Application of convex analysis to the treatment of elasto-plastic systems, in "Applications of Methods of Functional Analysis to Problems in Mechanics", (Germain and Nayroles, Eds.), Lecture Notes in Mathematics, 503, Springer-Verlag, Berlin, (1976), 56-89.
- J. J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, in "Nonsmooth Mechanics", (J.J. Moreau and P.D. Panagiotopoulos, Eds.), CISM Courses and Lectures, 302, Springer-Verlag, Vienna, New York, (1988), 1-82.
- R. A. Poliquin, R. T. Rockafellar, and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc. 352 (2000), no. 11, 523-{5249.
- Q. Zhu, On the solution set of differential inclusions in Banach space, J. Differential Equations 93 (1991), no. 2, 213-237. https://doi.org/10.1016/0022-0396(91)90011-W