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ON VAGUE FILTERS IN BE-ALGEBRAS

Sun Shin Ahn and Jung Mi Ko

Abstract. In this paper, we introduce the notion of a vague filter in BE-
algebras, and investigate some properties of them. Also we give conditions

for a vague set to be a vague filter, and we characterize vague filters in
BE-algebras.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras ([6, 7]). It is known that the class of BCK-algebras
is a proper subclass of the class of BCI-algebras. In [4, 5], Q. P. Hu and X.
Li introduced a wide class of abstract algebras: BCH-algebras. They have
shown that the class of BCI-algebras is a proper subclass of the class of BCH-
algebras. J. Neggers and H. S. Kim ([16]) introduced the notion of d-algebras
which is another generalization of BCK-algebras, and also they introduced
the notion of B-algebras ([17, 18]), i.e., (I) x ∗ x = 0; (II) x ∗ 0 = x; (III)
(x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y)), for any x, y, z ∈ X, which is equivalent in some
sense to the groups. Moreover, Y. B. Jun, E. H. Roh and H. S. Kim ([9])
introduced a new notion, called an BH-algebra, which is a generalization of
BCH/BCI/BCK-algebras, i.e., (I); (II) and (IV) x ∗ y = 0 and y ∗ x = 0
imply x = y for any x, y ∈ X. A. Walendziak obtained the another equivalent
axioms for B-algebra ([20]). H. S. Kim, Y. H. Kim and J. Neggers ([12])
introduced the notion a (pre-) Coxeter algebra and showed that a Coxeter
algebra is equivalent to an abelian group all of whose elements have order 2,
i.e., a Boolean group. C. B. Kim and H. S. Kim ([10]) introduced the notion
of a BM -algebra which is a specialization of B-algebras. They proved that
the class of BM -algebras is a proper subclass of B-algebras and also showed
that a BM -algebra is equivalent to a 0-commutative B-algebra. In [11], H. S.
Kim and Y. H. Kim introduced the notion of a BE-algebra as a generalization
of a BCK-algebra. Using the notion of upper sets they gave an equivalent
condition of the filter in BE-algebras.
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In this paper, we introduce the notion of a vague filter in BE-algebras, and
investigate some properties of them. Also we give conditions for a vague set to
be a vague filter, and we characterize vague filters in BE-algebras.

2. Preliminaries

We recall some definitions and results discussed in [11].

Definition 2.1. An algebra (X; ∗, 1) of type (2, 0) is called a BE-algebra if

(BE1) x ∗ x = 1 for all x ∈ X;
(BE2) x ∗ 1 = 1 for all x ∈ X;
(BE3) 1 ∗ x = x for all x ∈ X;
(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X (exchange).

We introduce a relation “≤” on X by x ≤ y if and only if x ∗ y = 1. A non-
empty subset S of X is said to be a subalgebra of a BE-algebra X if it is closed
under the operation “ ∗ ”. Noticing that x ∗ x = 1 for all x ∈ X, it is clear that
1 ∈ S.

Proposition 2.2. If (X; ∗, 1) is a BE-algebra, then x ∗ (y ∗ x) = 1 for any
x, y ∈ X.

Example 2.3. Let X := {1, a, b, c, d, 0} be a set with the following table:

∗ 1 a b c d 0
1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

Then (X; ∗, 1) is a BE-algebra.

Definition 2.4. Let (X; ∗, 1) be a BE-algebra and let F be a non-empty subset
of X. Then F is said to be a filter of X if

(F1) 1 ∈ F ;
(F2) x ∗ y ∈ F and x ∈ F imply y ∈ F .

In Example 2.3, F1 := {1, a, b} is a filter of X, but F2 := {1, a} is not a filter
of X, since a ∗ b ∈ F2 and a ∈ F2, but b ̸∈ F2.

Proposition 2.5. Let (X; ∗, 1) be a BE-algebra and let F be a filter of X. If
x ≤ y and x ∈ F for any y ∈ X, then y ∈ F .

3. Basic results on vague sets

Definition 3.1 ([3]). A vague set A in the universe of discourse U is charac-
terized by two membership functions given by:
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(1) A truth membership function

tA : U → [0, 1],

and
(2) A false membership function

fA : U → [0, 1],

where tA(u) is a lower bound of the grade of membership of u derived from the
“evidence for u”, and fA(u) is a lower bound on the negation of u derived from
the “evidence against u”, and

tA(u) + fA(u) ≤ 1.

Thus the grade of membership of u in the vague set A is bounded by a subin-
terval [tA(u), 1 − fA(u)] of [0, 1]. This indicates that if the actual grade of
membership is µ(u), then

tA(u) ≤ µ(u) ≤ 1− fA(u).

The vague set A is written as

A = {⟨u, [tA(u), fA(u)]⟩|u ∈ U},

where the interval [tA(u), 1− fA(u)] is called the vague value of u in A and is
denoted by VA(u).

Definition 3.2 ([3]). A vague set A of a set U is called

(1) the zero vague set of U if tA(u) = 0 and fA(u) = 1 for all u ∈ U ,
(2) the unit vague set of U if tA(u) = 1 and fA(u) = 0 for all u ∈ U .
(3) the α-vague set of U if tA(u) = α and fA(u) = 1− α where α ∈ (0, 1).

For α, β ∈ [0, 1] we now define (α, β)-cut and α-cut of a vague set.

Definition 3.3 ([3]). Let A be a vague set of a universe X with the true-
membership function tA and the false-membership function fA. The (α, β)-cut
of the vague set A is a crisp subset A(α,β) of the set X given by

A(α,β) = {x ∈ X|VA(x) ≥ [α, β]}.

Clearly A(0,0) = X. The (α, β)-cuts are also called vague-cuts of the vague set
A.

Definition 3.4 ([3]). The α-cut of the vague set A is a crisp subset Aα of the
set X given by Aα = A(α,α).

Note that A0 = X, and if α ≤ β, then Aβ ⊆ Aα and A(α,β) = Aα. Equiva-
lently, we can define the α-cut as

Aα = {x ∈ X|tA(x) ≥ α}.

For our discussion, we shall use the following notations, which are given in [3],
on interval arithmetic.
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Notation. Let I[0, 1] denote the family of all closed subintervals of [0, 1]. If
I1 = [a1, b1] and I2 = [a2, b2] are two elements of I[0, 1], we call I1 ≥ I2 if
a1 ≥ a2 and b1 ≥ b2. Similarly, we understand the relations I1 ≤ I2 and
I1 = I2. Clearly the relation I1 ≥ I2 does not necessarily imply that I1 ⊇ I2
and conversely. We define the term “imax” to mean the maximum of two
intervals as

imax(I1, I2) = [max(a1, a2),max(b1, b2)].

Similarly, we define “imin”. The concept of “imax” and “imin” could be ex-
tended to define “isup” and “iinf” of infinite number of elements of I[0, 1]. It is
obvious that L = {I[0, 1], isup, iinf,≤} is a lattice with universal bounds [0, 0]
and [1, 1].

4. Vague filters

In what follows let X be a BE-algebra unless otherwise specified.

Definition 4.1. A vague set A of X is called a vague filter of X if the following
conditions are true:

(c1) (∀x ∈ X) (VA(1) ≥ VA(x)),
(c2) (∀x, y ∈ X) (VA(y) ≥ imin{VA(x ∗ y), VA(x)}),

that is,

(4.1) tA(1) ≥ tA(x), 1− fA(1) ≥ 1− fA(x)

and

(4.2)
tA(y) ≥min{tA(x ∗ y), tA(x)},
1− fA(y) ≥ min{1− fA(x ∗ y), 1− fA(x)}

for all x, y ∈ X.
Let us illustrate this definition using the following examples.

Example 4.2. Let X := {0, a, b, c} be a BE-algebra with the following Cayley
table:

∗ 1 a b c
1 1 a b c
a 1 1 a a
b 1 1 1 a
c 1 a a 1

Let A be a vague set in X defined as follows:

A := {⟨1, [0.7, 0.2]⟩, ⟨a, [0.5, 0.3]⟩, ⟨b, [0.5, 0.3]⟩, ⟨c, [0.7, 0.2]⟩}.

It is routine to verify that A is a vague filter of X.

Proposition 4.3. Every vague filter A of X satisfies:

(4.3) (∀x, y ∈ X)(x ≤ y ⇒ VA(x) ≤ VA(y)).
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Proof. Let x, y ∈ X be such that x ≤ y. Then x ∗ y = 1 and so

tA(y) ≥ min{tA(x ∗ y), tA(x)} = min{tA(1), tA(x)} = tA(x),

1− fA(y) ≥ min{1− fA(x ∗ y), 1− fA(x)} = 1− fA(x).

This shows that VA(y) ≥ VA(x). □

Proposition 4.4. Every vague filter A of X satisfies:

(4.4) (∀x, y, z ∈ X)(VA(x ∗ z) ≥ imin{VA(x ∗ (y ∗ z)), VA(y)}).

Proof. Using (c2) and (BE4), we have

VA(x ∗ z) ≥ imin{VA(y ∗ (x ∗ z)), VA(y)}
= imin{VA(x ∗ (y ∗ z)), VA(y)}

for all x, y, z ∈ X. □

Theorem 4.5. If A is a vague set in X satisfying (c1) and (4.4), then A is a
vague filter of X.

Proof. Taking x := 1 in (4.4) and using (BE3), we have

VA(z) = VA(1 ∗ z)
≥ imin{VA(1 ∗ (y ∗ z)), VA(y)}
= imin{VA(y ∗ z), VA(y)}

for all y, z ∈ X. Hence A is a vague filter of X. □

Corollary 4.6. Let A be a vague set in X. Then A is a vague filter of X if
and only if it satisfies (c1) and (4.4).

Theorem 4.7. Let A be a vague set in X. Then A is a vague filter of X if
and only if it satisfies the following conditions:

(4.5) (∀x, y ∈ X)(VA(y ∗ x) ≥ VA(x)),

(4.6) (∀x, a, b ∈ X)(VA((a ∗ (b ∗ x)) ∗ x) ≥ imin{VA(a), VA(b)}).

Proof. Assume that A is a vague filter of X. Using (c2), Proposition 2.2, and
(c1), we get

VA(y ∗ x) ≥ imin{VA(x ∗ (y ∗ x)), VA(x)}
= imin{VA(1), VA(x)} = VA(x)

for all x, y ∈ X.

VA((a ∗ (b ∗ x)) ∗ x) ≥ imin{VA((a ∗ (b ∗ x)) ∗ (b ∗ x)), VA(b)}
≥ imin{VA(a), VA(b)}.
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Conversely, let A be a vague set in X satisfying conditions (4.5) and (4.6). If
we take y := x in (4.5), then VA(1) = VA(x ∗ x) ≥ VA(x) for all x ∈ X. Using
(4.6), we obtain

VA(y) = VA(1 ∗ y)
= VA(((x ∗ y) ∗ (x ∗ y)) ∗ y)
≥ imin{VA(x ∗ y), VA(x)}

for all x, y ∈ X. Hence A is a vague filter of X. □

Proposition 4.8. Let A be a vague set in X. Then A is a vague filter of X if
and only if it satisfies:

(4.7) (∀x, y, z ∈ X)(z ≤ x ∗ y ⇒ VA(y) ≥ imin{VA(x), VA(z)}).

Proof. Assume that A is a vague filter of X. Let x, y, z ∈ X be such that
z ≤ x ∗ y. By Proposition 4.3 and (c2), we have

VA(y) ≥ imin{VA(x ∗ y), VA(x)}
≥ imin{VA(z), VA(x)}.

Conversely, suppose that A satisfies (4.7). By (BE2), we have x ≤ x ∗ 1 = 1.
Hence VA(1) ≥ imin{VA(x), VA(x)} = VA(x) by (4.7). Thus (c1) is valid. Using
(BE1) and (BE4), we obtain x ≤ (x ∗ y) ∗ y for all x, y ∈ X. It follows from
(4.7) that VA(y) ≥ imin{VA(x ∗ y), VA(x)}. Hence (c2) holds. Therefore A is a
vague filter of X. □

As a generalization of Proposition 4.8, we have the following results.

Theorem 4.9. If a vague set A in X is a vague filter of X, then

(4.8)
n∏

i=1

wi ∗ x = 1 ⇒ VA(x) ≥ imin{VA(wi)|i = 1, . . . , n}

for all x,w1, . . . , wn ∈ X, where
∏n

i=1 wi ∗x = wn ∗ (wn−1 ∗ (· · · ∗ (w1 ∗x) · · · )).

Proof. The proof is by induction on n. Let A be a vague filter of X. By
Proposition 4.3 and (4.7), we know that the condition (4.8) is valid for n = 1, 2.
Assume that A satisfies the condition (4.8) for n = k, i.e.,

k∏
i=1

wi ∗ x = 1 ⇒ VA(x) ≥ imin{VA(wi)|i = 1, . . . , k}

for all x,w1, . . . , wk ∈ X. Let x,w1, . . . , wk, wk+1 ∈ X be such that
∏k+1

i=1 wi ∗
x = 1. Then

VA(w1 ∗ x) ≥ imin{VA(wj)|j = 2, . . . , k + 1}.
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Since A is a vague filter of X, it follows from (c2) that

VA(x) ≥ imin{VA(w1 ∗ x), VA(w1))}
≥ imin{VA(w1), {VA(wj)|j = 2, . . . , k + 1}}
= imin{VA(wj)|j = 1, . . . , k + 1}.

This completes the proof. □

Now we consider the converse of Theorem 4.9.

Theorem 4.10. Let A be a vague set in X satisfying the condition (4.8). Then
A is a vague filter of X.

Proof. Note that 1 ∗ (1 ∗ (1 ∗ · · · (1︸ ︷︷ ︸
n times

∗x)) · · · ) = x. By (BE2), we have x ≤ x∗1 =

1. Hence VA(1) ≥ VA(x) for all x ∈ X. Thus (c1) is valid. Let x, y, z ∈ X be
such that z ≤ x ∗ y. Then

1 = z ∗ (x ∗ y) = z ∗ (1 ∗ · · · (1 ∗ (1︸ ︷︷ ︸
n−2 times

∗(x ∗ y))) · · · ))

and so

VA(y) ≥ imin{VA(z), VA(x), VA(1)}
= imin{VA(z), VA(x)}.

Hence by Proposition 4.8, we conclude that A is a vague filter of X. □

Theorem 4.11. Let A be a vague filter of X. Then for any α, β ∈ [0, 1], the
vague-cut A(α,β) is a crisp filter of X.

Proof. Obviously, 1 ∈ A(α,β). Let x, y ∈ X be such that x ∈ A(α,β) and
x ∗ y ∈ A(α,β). Then VA(x) ≥ [α, β], i.e., tA(x) ≥ α and 1 − fA(x) ≥ β; and
VA(x ∗ y) ≥ [α, β], i.e., tA(x ∗ y) ≥ α and 1 − fA(x ∗ y) ≥ β. It follows from
(4.2) that

tA(y) ≥ min{tA(x ∗ y), tA(x)} ≥ α,

1− fA(y) ≥ min{1− fA(x ∗ y), 1− fA(y)} ≥ β

so that VA(y) ≥ [α, β]. Hence y ∈ A(α,β) and so A(α,β) is a filter of X. □

The filter like A(α,β) are also called vague-cut filters of X. Clearly we have
the following results.

Proposition 4.12. Let A be a vague filter of X. Two vague-cut filters A(α,β)

and A(ω,γ) with [α, β] < [ω, γ] are equal if and only if there is no x ∈ X such
that

[α, β] ≤ VA(x) ≤ [ω, γ].
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Theorem 4.13. Let X be a finite BE-algebra and let A be a vague filter of
X. Consider the set V (A) given by

V (A) := {VA(x)|x ∈ X}.
Then Ai are the only vague-cut filters of X, where Ai ∈ V (A).

Proof. Consider [a1, a2] ∈ I[0, 1] where [a1, a2] /∈ V (A). If [α, β] < [a1, a2] <
[ω, γ] where [α, β], [ω, γ] ∈ V (A), then A(α,β) = A(a1,a2) = A(ω,γ). If [a1, a2] <
[a1, a3] where [a1, a3] = imin{VA(x)|x ∈ X}, then A(a1,a3) = X = A(a1,a2).
Hence for any [a1, a2] ∈ I[0, 1], the vague-cut filter A(a1,a2) is one of Ai ∈ V (A).
This competes the proof. □
Theorem 4.14. Any filter F of X is a vague-cut filter of some vague filter of
X.

Proof. Consider the vague set A of X given by

VA =

{
[α, α] if x ∈ F

[0, 0] if x /∈ F ,

where α ∈ (0, 1). Since 1 ∈ F , we have VA(1) = [α, α] ≥ VA(x) for all x ∈ X.
Let x, y ∈ X. If y ∈ F , then

VA(y) = [α, α] ≥ imin{VA(x ∗ y), VA(x)}.
Assume that y /∈ F . Then x /∈ F or x ∗ y /∈ F . It follows that

VA(y) = [0, 0] = imin{VA(x ∗ y), VA(x)}.
Thus A is a vague filter of X. Clearly F = A(α,α). □
Theorem 4.15. Let A be a vague filter of X. Then the set

F := {x ∈ X|VA(x) = VA(1)}
is a crisp filter of X.

Proof. Obviously 1 ∈ F . Let x, y ∈ X be such that x ∗ y ∈ F and x ∈ F . Then
VA(x ∗ y) = VA(1) = VA(x), and so

VA(y) ≥ imin{VA(x ∗ y), VA(x)} = VA(1)

by (c2). Since VA(1) ≥ VA(y) for all y ∈ X, it follows that VA(y) = VA(1) and
so that y ∈ F . Therefore F is a crisp filter of X. □
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