Commun. Korean Math. Soc. **26** (2011), No. 3, pp. 373–384 DOI 10.4134/CKMS.2011.26.3.373

GENERALIZED IDEAL ELEMENTS IN *le-***GENIGROUPS**

Kostaq Hila and Edmond Pisha

ABSTRACT. In this paper we introduce and give some characterizations of (m, n)-regular le- Γ -semigroup in terms of (m, n)-ideal elements and (m, n)-quasi-ideal elements. Also, we give some characterizations of subidempotent (m, n)-ideal elements in terms of r_{α} - and l_{α} - closed elements.

1. Introduction and preliminaries

In 1981, Sen [19] introduced the concept and notion of the Γ -semigroup as a generalization of semigroup and of ternary semigroup. Many classical notions and results of the theory of semigroups have been extended and generalized to Γ -semigroups. We [1, 2, 5] introduced and gave several other properties and characterizations in le- Γ -semigroups in general and regular le- Γ -semigroups in particular. The concept of generalized ideals and (m, n)-ideals elements in semigroups have been introduced by Lajos in [14] as a generalization of one-sided (left or right) ideals in semigroups and it was studied by several authors such as [7], [10], [11], [15], [16], [17], [18] and others. Kehayopulu [8, 9] generalized this concept and several results related in *poe*-and *le*-semigroups. In this paper we extend these concepts and results in le- Γ -semigroups. During this paper we introduce and give some characterizations of (m, n)-regular *le*- Γ -semigroup in terms of (m, n)-ideal elements and (m, n)-quasi-ideal elements. Also, we give some characterizations of subidempotent (m, n)-ideal elements in terms of r_{α} - and l_{α} - closed elements with respect to appropriate elements.

We introduce below necessary notions and present a few auxiliary results that will be used throughout the paper.

In 1986, Sen and Saha [20] defined Γ -semigroup as a generalization of semigroup and ternary semigroup as follows:

Definition 1.1. Let M and Γ be two non-empty sets. Denote by the letters of the English alphabet the elements of M and with the letters of the Greek alphabet the elements of Γ . Then M is called a Γ -semigroup if

©2011 The Korean Mathematical Society

Received February 17, 2010.

²⁰¹⁰ Mathematics Subject Classification. 06F99, 06F05, 20M10.

Key words and phrases. Γ -semigroup, po- Γ -semigroup, poe- Γ -semigroup, $\lor e$ - Γ -semigroup, (m, n)-ideal element, (m, n)-regular le- Γ -semigroup, (m, n)-quasi-ideal element, bi-ideal elements.

- (1) $a\gamma b \in M$ for all $a, b \in M$ and $\gamma \in \Gamma$.
- (2) $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$.
- (3) If $m_1, m_2, m_3, m_4 \in M, \gamma_1, \gamma_2 \in \Gamma$ such that $m_1 = m_3, \gamma_1 = \gamma_2$ and $m_2 = m_4$, then $m_1\gamma_1m_2 = m_3\gamma_2m_4$.

Example 1.2. Let M be a semigroup and Γ be any non-empty set. If we define $a\gamma b = ab$ for all $a, b \in M$ and $\gamma \in \Gamma$. Then M is a Γ -semigroup.

Example 1.3. Let M be a set of all negative rational numbers. Obviously M is not a semigroup under usual product of rational numbers. Let $\Gamma = \{-\frac{1}{p} : p \text{ is prime}\}$. Let $a, b, c \in M$ and $\alpha \in \Gamma$. Now if $a\alpha b$ is equal to the usual product of rational numbers a, α, b , then $a\alpha b \in M$ and $(a\alpha b)\beta c = a\alpha(b\beta c)$. Hence M is a Γ -semigroup.

Example 1.4. Let $M = \{-i, 0, i\}$ and $\Gamma = M$. Then M is a Γ -semigroup under the multiplication over complex numbers while M is not a semigroup under complex number multiplication.

These examples show that every semigroup is a Γ -semigroup and Γ -semigroups are a generalization of semigroups.

A Γ -semigroup M is called a *commutative* Γ -semigroup if for all $a, b \in M$ and $\gamma \in \Gamma$, $a\gamma b = b\gamma a$. A nonempty subset K of a Γ -semigroup M is called a sub- Γ -semigroup of M if for all $a, b \in K$ and $\gamma \in \Gamma$, $a\gamma b \in K$.

Example 1.5. Let M = [0, 1] and $\Gamma = \{\frac{1}{n} | n \text{ is a positive integer} \}$. Then M is a Γ -semigroup under usual multiplication. Let K = [0, 1/2]. We have that K is a nonempty subset of M and $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$. Then K is a sub- Γ -semigroup of M.

Different examples can be found in [1, 3, 4, 19, 20].

Definition 1.6. A po- Γ -semigroup (: ordered Γ -semigroup) is an ordered set M at the same time a Γ -semigroup such that for all $a, b, c \in M$ and for all $\gamma \in \Gamma$

$$a \le b \Rightarrow a\gamma c \le b\gamma c, c\gamma a \le c\gamma b.$$

A poe- Γ -semigroup is a po- Γ -semigroup M with a greatest element "e" (i.e., $e \geq a, \forall a \in M$).

In a po- Γ -semigroup M, a is called a right (resp. left) ideal element if $a\alpha b \leq a$ (resp. $b\alpha a \leq a$) for all $b \in M$ and for all $\alpha \in \Gamma$. And a is called an ideal element if it is both a right and left ideal element. In a poe- Γ -semigroup M, a is called right (resp. left) ideal element if $a\alpha e \leq a$ (resp. $e\alpha a \leq a$) for all $\alpha \in \Gamma$.

Examples of ordered Γ -semigroups can be found in [3, 4, 6].

For nonempty subsets A and B of M and a nonempty subset Γ' of Γ , let $A\Gamma'B = \{a\gamma b : a \in A, b \in B \text{ and } \gamma \in \Gamma'\}$. If $A = \{a\}$, then we also write $\{a\}\Gamma'B$ as $a\Gamma'B$, and similarly if $B = \{b\}$ or $\Gamma' = \{\gamma\}$.

Let T be a sub- Γ -semigroup of M. For $A \subseteq T$ we denote

$$(A]_T = \{ t \in T | t \le a \text{ for some } a \in A \}, \\ [A]_T = \{ t \in T | t \ge a \text{ for some } a \in A \}.$$

An element a of a po- Γ -semigroup M is called *regular* if there exists $b \in M$ such that $a \leq a\alpha b\beta a$ for some $\alpha, \beta \in \Gamma$. A po- Γ -semigroup M is called *regular* if every element of M is regular. The following are equivalent:

- (1) For every $A \subseteq M, A \subseteq (A\Gamma M\Gamma A]$,
- (2) For every element $a \in M, a \in (a\Gamma M\Gamma a]$.

An element a of a poe- Γ -semigroup is called a quasi-ideal element if $e\alpha a \wedge a\alpha e$ exists and $a\alpha e \wedge e\alpha a \leq a$ for all $\alpha \in \Gamma$. We denote by q(a) the quasi-ideal element of M generated by a, i.e., the least quasi-ideal element of M containing a. We say that $a \in M$ is a *bi-ideal element* of M if and only if $a\alpha e\beta a \leq a$, $\forall \alpha, \beta \in \Gamma$.

Definition 1.7. Let M be a semilattice under \vee with a greatest element e and at the same time a *po*- Γ -semigroup such that for all $a, b, c \in M$ and for all $\gamma \in \Gamma$

$$a\gamma(b\lor c) = a\gamma b\lor a\gamma c$$

and

$$(a \lor b)\gamma c = a\gamma c \lor b\gamma c.$$

Then M is called a $\lor e$ - Γ -semigroup.

A $\lor e$ - Γ -semigroup which is also a lattice is called an *le*- Γ -*semigroup*. The usual order relation \leq on M is defined in the following way

$$a \le b \Leftrightarrow a \lor b = b.$$

Then we can show that for any $a, b, c \in M$ and $\gamma \in \Gamma$, $a \leq b$ implies $a\gamma c \leq b\gamma c$ and $c\gamma a \leq c\gamma b$.

Example 1.8 ([1]). Let (X, \leq) and (Y, \leq) be two finite chains. Let M be the set of all isotone mappings from X into Y and Γ be the set of all isotone mappings from Y into X. Let $f, g \in M$ and $\alpha \in \Gamma$. We define $f \alpha g$ to denote the usual mapping composition of f, α and g. Then M is a Γ -semigroup. For $f, g \in M$, the mappings $f \lor g$ and $f \land g$ are defined by letting, for each $a \in X$

$$(f \lor g)(a) = \max\{f(a), g(a)\}, \ (f \land g)(a) = \min\{f(a), g(a)\}$$

(the maximum and minimum are considered with respect to the order \leq in X and Y). The greatest element e is the mapping that sends every $a \in X$ to the greatest element of finite chains (Y, \leq) . Then M is an le- Γ -semigroup.

Example 1.9 ([1]). Let M be a *po*- Γ -semigroup. Let M_1 be the set of all ideals of M. Then $(M_1, \subseteq, \cap, \cup)$ is an *le*- Γ -semigroup.

Example 1.10 ([1]). Let M be a po- Γ -semigroup. Let $M_1 = P(M)$ be the set of all subsets of M and $\Gamma_1 = P(\Gamma)$ the set of all subsets of Γ . Then M_1 is a

po- Γ_1 -semigroup if

$$A\Lambda B = \begin{cases} (A](\Lambda](B) = (A\Lambda B) & \text{if } A, B \in M_1 \setminus \{\emptyset\}, \Lambda \in \Gamma_1 \setminus \{\emptyset\} \\ \emptyset & \text{if } A = \emptyset \text{ or } B = \emptyset. \end{cases}$$

Then $(M_1, \subseteq, \cap, \cup)$ is an le- Γ_1 -semigroup.

Example 1.11. Let G be a group, I, \wedge two index sets and Γ the collection of some $\wedge \times I$ matrices over $G^o = G \cup \{0\}$, the group with zero. Let μ^o be the set of all elements $(a)_{i\lambda}$ where $i \in I, \lambda \in \wedge$ and $(a)_{i\lambda}$ the $I \times \wedge$ matrix over G^o having a in the *i*-th row and λ -th column, its remaining entries being zero. The expression $(0)_{i\lambda}$ will be used to denote the zero matrix. For any $(a)_{i\lambda}, (b)_{j\mu}, (c)_{k\nu} \in \mu^o$ and $\alpha = (p_{\lambda i}), \beta = (q_{\lambda i}) \in \Gamma$ we define $(a)_{i\lambda}\alpha(b)_{j\mu} = (ap_{\lambda j}b)_{i\mu}$. Then it is easy verified that $[(a)_{i\lambda}\alpha(b)_{j\mu}]\beta(c)_{k\nu} = (a)_{i\lambda}\alpha[(b)_{j\mu}\beta(c)_{k\nu}]$. Thus μ^o is a Γ -semigroup. We call Γ the sandwich matrix set and μ^o the Rees $I \times \wedge$ matrix Γ -semigroup over G^o with sandwich matrix set Γ and denote it by $\mu^o(G: I, \wedge, \Gamma)$. In [6] we deal with lattice-ordered Rees matrix Γ -semigroups.

If M is a $\forall e$ - Γ -semigroup, then every map $\varphi : M \to M$ is called a topology on M [1]. A topology φ on M is said to be an:

- (1) S-topology on M if and only if $a_1, a_2 \in M$, with $a_1 \leq a_2$ implies $\varphi(a_1) \leq \varphi(a_2)$.
- (2) *I*-topology on *M* if and only if $a \in M$, implies $a \leq \varphi(a)$.
- (3) U-topolgy on M if and only if $\varphi(\varphi(a)) = \varphi(a)$ for every $a \in M$.

An element $a \in M$ is called a closed element of M related to a topology φ (or φ -closed) if and only if $\varphi(a) = a$. The set of all closed element of M related to φ will be denoted by F_{φ} .

In a $\lor e$ - Γ -semigroup M, we define two mappings r_{α} and l_{β} for each $\alpha, \beta \in \Gamma$ as follows:

$$r_{\alpha}: M \to M, r_{\alpha}(a) = a\alpha e \lor a,$$
$$l_{\beta}: M \to M, l_{\beta}(a) = e\beta a \lor a$$

for all $a \in M$.

It is clear that r_{α} and l_{β} , for $\alpha, \beta \in \Gamma$, are *I*- and *S*-topologies on *M*. If *M* is an *le*- Γ -semigroup, then r_{α} and l_{β} are *U*-topologies on *M*.

For other definitions and terminologies not given in this paper, the reader is referred to [1], [19], [20].

2. On (m, n)-ideal elements in le- Γ -semigroups

Let M be a $\lor e$ - Γ -semigroup and $m, n \in \mathbb{Z}^+$.

Definition 2.1. An element $a \in M$ is called an (m, n)-ideal element of M if

$$(a\gamma_1 a\gamma_2 a \dots \gamma_{m-1} a)\alpha e\beta(a\rho_1 a\rho_2 a \dots \rho_{n-1} a) \le a$$

for all $\alpha, \beta \in \Gamma$ and for some $\gamma_1, \gamma_2, \ldots, \gamma_{m-1}, \rho_1, \ldots, \rho_{n-1} \in \Gamma$.

 a^0 is defined such that $a^0\gamma b = b\gamma a^0 = b$ ($b \in M, \gamma \in \Gamma$).

For m = 0, n = 1 (resp. m = 1, n = 0) Definition 2.1 give us the trivial case of left (resp. right)-ideal elements. It is clear that the right (resp. left)-ideal elements are (m, 0) (resp. (0, n))-ideal elements for every $m \ge 1$ (resp. $n \ge 1$). An le- Γ -semigroup is called *subidempotent* if $a\alpha a \le a$ for all $a \in M, \alpha \in \Gamma$.

In the sequel of the paper, for the sake of simplicity, we denote $a^m =$

 $a\gamma_1a\gamma_2a\ldots\gamma_{m-1}a$ for some $\gamma_1,\gamma_2,\ldots,\gamma_{m-1}\in\Gamma$ and for some $m\in\mathbb{Z}^+$.

It can be easily proved the following statements:

- (1) Let M be a poe- Γ -semigroup and a, b two (m, n)-ideal elements of M. Then the intersection $a \wedge b$ if exists is an (m, n)-ideal element of M.
- (2) Let M be a poe- Γ -semigroup. Then the k-power $(k \ge 1)$ of an (m, n)-ideal element is also an (m, n)-ideal element.
- (3) Let M be a poe-Γ-semigroup. If a is an (m, n)-ideal element of M (m, n ≥ 1), then for every b ∈ M, α ∈ Γ such that aαb ≤ a (resp. bαa ≤ a), the products aαb and bαa are (m, n)-ideal elements of M. For m = n = 1 we have: If a is a bi-ideal element, then aγb and bγa, γ ∈ Γ, are bi-ideal elements, for all b ∈ M. Clearly, ∀α, β, γ ∈ Γ,

$$(a\gamma b)\alpha e\beta(a\gamma b) = (a\gamma b)\alpha(e\beta a)\gamma b \leq (a\gamma b)\alpha e\gamma b = a\gamma(b\alpha e\gamma b) \leq a\gamma b,$$

similarly $(b\gamma a)\alpha e\beta(b\gamma a) \leq b\gamma a$.

(4) Let M be a $\lor e$ - Γ -semigroup and a, b two left (resp. right)-ideal elements of M. Then the union $a \lor b$ is a subidempotent (m, n)-ideal element, $\forall m \ge 0, \forall n \ge 1$ (resp. $n \ge 0, m \ge 1$).

In the following, $\langle a \rangle_{(m,n)}$ will be denoted the principal (m,n)-ideal element of M generated by a, i.e., the least $\langle m, n \rangle$ -ideal element of M containing a and by $I_{(m,n)}$ the set of all (m, n)-ideal elements of M.

Definition 2.2. Let M be a $\vee e$ - Γ -semigroup and $m, n \in \mathbb{Z}^+$. M is called (m, n)-regular if

$$a \le (a\gamma_1 a\gamma_2 a \dots \gamma_{m-1} a)\alpha e\beta(a\rho_1 a\rho_2 a \dots \rho_{n-1} a)$$

for all $a \in M, \alpha, \beta \in \Gamma$ and for some $\gamma_1, \gamma_2, \ldots, \gamma_{m-1}, \rho_1, \ldots, \rho_{n-1} \in \Gamma$.

Lemma 2.3. Let M be a $\lor e$ - Γ -semigroup and $m, n, k \in \mathbb{Z}^+$. Then the following hold true:

- (1) $(a \lor a^m \alpha e \beta a^k)^m \gamma e = a^m \gamma e, \forall a \in M, \alpha, \beta, \gamma \in \Gamma.$
- (2) $e\gamma(a \lor a^k \alpha e\beta a^n)^n = e\gamma a^n, \forall a \in M, \alpha, \beta, \gamma \in \Gamma.$
- (3) $\langle a \rangle_{(m,n)} = a \vee a^m \alpha e \beta a^n, \forall a \in M, \alpha, \beta, \in \Gamma.$

Proof. We prove the first two conditions in case $m, n \ge 1$, since the case m = 0 or n = 0 is obvious. For $a \in M, \alpha, \beta, \rho \in \Gamma$, we have

(1) $(a \lor a^m \alpha e \beta a^k)^m \gamma e = ((a \lor a^m \alpha e \beta a^k) \rho)^{m-1} (a \lor a^m \alpha e \beta a^k) \gamma e = ((a \lor a^m \alpha e \beta a^k) \rho)^{m-1} ((a \gamma e \lor a^m \alpha e \beta a^k \gamma e) = ((a \lor a^m \alpha e \beta a^k) \rho)^{m-1} a \gamma e = ((a \lor a^m \alpha e \beta a^k) \rho)^{m-2} (a \lor a^m \alpha e \beta a^k) \rho a \gamma e = ((a \lor a^m \alpha e \beta a^k) \rho)^{m-2} (a \rho a \gamma e \lor a^m \alpha e \beta a^{k+1} \gamma e) = ((a \lor a^m \alpha e \beta a^k) \rho)^{m-2} a^2 \gamma e = \cdots = a^m \gamma e.$

The proof of (2) is analogues to that of (1).

(3) Let $m, n \geq 0, \alpha, \beta \in \Gamma$. Then, $(a \vee a^m \alpha e \beta a^n)^m \alpha e \beta (a \vee a^m \alpha e \beta a^n)^n = a^m \alpha e \beta a^n$ (by (1) and (2)), so that $a \vee a^m \alpha e \beta a^n \in I_{(m,n)}$. Now, if b is an (m, n)-ideal element of M containing a, then $a \vee a^m \alpha e \beta a^n \leq b$. This finishes the proof.

Theorem 2.4. $A \lor e$ - Γ -semigroup M is (m, n)-regular if and only if

(*)
$$a^m \alpha e \beta a^n = a, \ \forall a \in I_{(m,n)}, \forall \alpha, \beta \in \Gamma.$$

Proof. (\Rightarrow) This statement is obvious.

 (\Leftarrow) Let $a \in M, \alpha, \beta \in \Gamma$. Since $\langle a \rangle_{(m,n)} \in I_{(m,n)}$, we have:

 $(\langle a \rangle_{(m,n)})^m \alpha e \beta (\langle a \rangle_{(m,n)})^n = \langle a \rangle_{(m,n)}$

But, $(\langle a \rangle_{(m,n)})^m \alpha e = a^m \alpha e$ (by Lemma 2.3(3),(1)), and $e\beta(\langle a \rangle_{(m,n)})^n = e\beta a^n$ (by Lemma 2.3(3),(2)).

Thus, $a \leq a^m \alpha e \beta a^n$ and M is (m, n)-regular.

Theorem 2.5. Let M be a subidempotent le- Γ -semigroup. Then M is (m, n)-regular if and only if

(**)
$$a \wedge b = a^m \alpha b \wedge a\beta b^n, \ \forall a \in I_{(m,0)}, b \in I_{(0,n)}, \alpha, \beta \in \Gamma.$$

Proof. (\Rightarrow) Let M be a (m, n)-regular le- Γ -semigroup. Let $a \in I_{(m,0)}$ and $b \in I_{(0,n)}$. Then, $a^m \alpha e \leq a$ and $e\beta b^n \leq b$, hence $a^m \alpha b \wedge a\beta b^n \leq a^m \alpha e \wedge e\beta b^n \leq a \wedge b$. On the other hand, $a \wedge b \leq (a \wedge b)^m \alpha e\beta (a \wedge b)^n \leq a^m \alpha e\beta b^n \leq a^m \alpha b$, similarly, $a \wedge b \leq a\beta b^n$, hence $a \wedge b \leq a^m \alpha b \wedge a\beta b^n$.

(⇐) Since M is a (0,0)-regular le- Γ -semigroup, the the statement is true for m = n = 0.

Let $m \neq 0, n = 0$. If $a \in I_{(m,0)}$, then since e is a (0,0)-ideal element of M, we have by (**), that $a = a^m \alpha e, \alpha \in \Gamma$, so that M is (m, 0)-regular (Theorem 2.4). The proof in the case $m = 0, n \neq 0$ is analogues.

Now, let $m \neq 0, n \neq 0$. Then, M has the property:

$$(***) a \wedge b \leq a\alpha b, \ \forall a \in I_{(m,0)}, \ \forall b \in I_{(0,n)}, \ \forall \alpha \in \Gamma.$$

Indeed: let $a \in I_{(m,0)}$. Then $\forall \alpha \in \Gamma$,

$$a \wedge b = a^m \alpha b \wedge a \alpha b^n \leq a \alpha b \ (m \geq 1, n \geq 1).$$

Now, let $a \in M$. Since $\langle a \rangle_{(m,0)} \in I_{(m,0)}$ and e is a (0, n)-ideal element of M, we have by (**), that $\forall \alpha, \beta \in \Gamma$

$$\begin{aligned} \langle a \rangle_{(m,0)} &= (\langle a \rangle_{(m,0)})^m \alpha e \wedge \langle a \rangle_{(m,0)} \beta e^n \\ &\leq (\langle a \rangle_{(m,0)})^m \alpha e = a^m \alpha e \text{ (by Lemma 2.3(3),(1)),} \end{aligned}$$

thus $\langle a \rangle_{(m,0)} = a^m \alpha e$. Similarly, $\langle a \rangle_{(0,n)} = e \beta a^n$. On the other hand,

$$a \leq \langle a \rangle_{(m,0)} \land \langle a \rangle_{(0,n)} \leq \langle a \rangle_{(m,0)} \gamma \langle a \rangle_{(0,n)}, \forall \gamma \in \Gamma(\text{by}(***))$$
$$= a^m \alpha e^2 \beta a^n \leq a^m \alpha e \beta a^n.$$

Therefore, M is (m, n)-regular, and this finishes the proof.

Theorem 2.6. Let M be a poe- Γ -semigroup and $m, n \in \mathbb{Z}^+$ with $m + n \ge 1$. Let be the following statements for $a \in M, \rho \in \Gamma$:

- (1) $\exists a_i \in F_{r_\rho}^{(a_{i-1})}, i = 1, 2, ..., m \text{ and} \\ \exists b_j \in F_{l_\rho}^{(b_{j-1})}, j = 1, 2, ..., n \text{ where} \\ a_0 = e, b_0 = a_m \text{ and } b_n = a \text{ (resp. } b_0 = e, a_0 = b_n \text{ and } a_m = a). \\ (2) a \text{ is a subidempotent } (m, n) \text{-ideal element of } M. \end{cases}$
- (2) u is a sublactification (m, n)-lacat element of m.

Then, (1) \Rightarrow (2). In particular, if M is a $\lor e$ - Γ -semigroup, then (1) \Leftrightarrow (2).

Proof. (1) \Rightarrow (2). In fact *a* is subidempotent, and for $\alpha, \beta, \rho \in \Gamma$, we have:

$$b_{n}^{m}\alpha e\beta b_{n}^{n} = (b_{n}\rho)^{m-1}b_{n}\alpha e\beta b_{n}^{n} \leq (b_{n}\rho)^{m-1}a_{1}\alpha e\beta b_{n}^{n}$$

$$\leq (b_{n}\rho)^{m-1}a_{1}\beta b_{n}^{n} = (b_{n}\rho)^{m-2}b_{n}\rho a_{1}\beta b_{n}^{n} \leq (b_{n}\rho)^{m-2}a_{2}\rho a_{1}\beta b_{n}^{n}$$

$$\leq (b_{n}\rho)^{m-2}a_{2}\beta b_{n}^{n} \leq \cdots \leq (b_{n}\rho)^{m-(m-1)}a_{m-1}\beta b_{n}^{n}$$

$$= b_{n}\rho a_{m-1}\beta b_{n}^{n} \leq a_{m}\rho a_{m-1}\beta b_{n}^{n} \leq a_{m}\beta b_{n}^{n}$$

$$= a_{m}\beta b_{n}\rho b_{n}^{n-1} \leq a_{m}\beta b_{1}\rho b_{n}^{n-1} \leq b_{1}\rho b_{n}^{n-1}$$

$$= b_{1}\rho b_{n}\rho b_{n}^{n-2} \leq b_{1}\rho b_{2}\rho b_{n}^{n-2} \leq b_{2}\rho b_{n}^{n-2}$$

$$\leq \cdots \leq b_{n-1}\rho b_{n}^{n-(n-1)} = b_{n-1}\rho b_{n} \leq b_{n}.$$

(2) \Rightarrow (1). Let M be a $\lor e$ - Γ -semigroup and let a be a subidempotent $\langle m, n \rangle$ -ideal element of M. We put:

$$a_i = \langle a \rangle_{(i,0)}, i = 0, 1, 2, \dots, m \text{ and } b_j = \langle a \rangle_{(m,j)}, j = 0, 1, 2, \dots, n.$$

Then, by Lemma 2.3(3), we have $\forall \alpha, \rho \in \Gamma$,

$$a_i = \langle a \rangle_{(i,0)} = a \lor a^i \alpha e = a \lor (a\rho)^{i-1} a \alpha e \le a \lor a^{i-1} \alpha e$$
$$= \langle a \rangle_{(i-1,0)} = a_{i-1}, i = 1, 2, \dots, m$$

and $\forall \delta, \gamma, \rho \in \Gamma$

$$b_j = \langle a \rangle_{(m,j)} = a \lor a^m \delta e \gamma a^j = a \lor a^m \delta e \gamma a \rho a^{j-1} \le a \lor a^m \delta e \gamma a^{j-1} = \langle a \rangle_{(m,j-1)} = b_{j-1}, j = 1, 2, \dots, n.$$

Also, $a_0 = e, b_0 = a_m$ and $b_n = a$. Moreover,

$$\begin{split} a_i \rho a_{i-1} &= \langle a \rangle_{(i,0)} \rho \langle a \rangle_{(i-1,0)} = (a \lor a^i \alpha e) \rho(a \lor a^{i-1} \alpha e) \\ &= a^2 \lor a^i \alpha e \rho a \lor a^i \alpha e \lor a^i \alpha e \rho a^{i-1} \alpha e \le a \lor a^i \alpha e \\ &= \langle a \rangle_{(i,0)} = a_i, i = 1, 2, \dots, m \end{split}$$

that is,

$$a_i \in F_{r_o}^{(a_{i-1})}, i = 1, 2, \dots, m.$$

Also, $\forall \delta, \gamma, \rho \in \Gamma$

 $\langle a \rangle_{(m,j-1)} \rho \langle a \rangle_{(m,j)}$ $= (a \lor a^m \delta e \gamma a^{j-1}) \rho (a \lor a^m \delta e \gamma a^j)$ $= a^2 \lor a^m \delta e \gamma a^j \lor a^{m+1} \delta e \gamma a^j \lor a^m \delta e \gamma a^{j-1+m} \delta e \gamma a^j$ $\leq a \lor a^m \delta e \gamma a^j = \langle a \rangle_{(m,j)}, j = 1, 2, \dots, n.$

Therefore,

$$b_{i-1}\rho b_i \le b_i, j = 1, 2, \dots, n$$

that is,

$$b_j \in F_{l_o}^{(b_{j-1})}, j = 1, 2, \dots, n$$

The other case can be proved similarly. In that case, for $(2) \Rightarrow (1)$ we put:

$$b_j = \langle a \rangle_{(0,j)}, j = 0, 1, 2, \dots, n$$

and

$$a_i = \langle a \rangle_{(i,n)}, i = 0, 1, 2, \dots, m.$$

Let M be a poe- Γ -semigroup. An element $a \in M$ is called $r_{\alpha}l_{\alpha}$ -closed, $\alpha \in \Gamma$, if there exists a right-ideal element $b \in M$ such that a is l_{α} -closed with respect to b. Similarly, a is called $l_{\alpha}r_{\alpha}$ -closed, if there exists a left-ideal element b with $a \in F_{r_{\alpha}}^{(b)}$.

Corollary 2.7. Let M be a poe- Γ -semigroup. Then all $r_{\alpha}l_{\alpha}$ -closed and $l_{\alpha}r_{\alpha}$ closed elements are subidempotent bi-ideal elements. In particular, if M is a $\lor e$ - Γ -semigroup, the preceding three classes of elements are the same.

3. On (m, n)-quasi-ideal elements in le- Γ -semigroups

Definition 3.1. Let M be a *poe*- Γ -semigroup. An element q of M is called an (m, n)-quasi-ideal element of M if $q^m \alpha e \wedge e\beta q^n$ exists and $q^m \alpha e \wedge e\beta q^n \leq q$, $\alpha, \beta \in \Gamma$.

Remark 3.2. Every quasi-ideal element q of a poe- Γ -semigroup M is an (m, n)quasi-ideal element of M for all $m, n \in \mathbb{Z}^+$ such that $q^m \alpha e \wedge e\beta q^n$ exists. For $m, n \in \mathbb{Z}^+$, every (m, n)-quasi-ideal element is an (m, n)-ideal element of M. If $\{q_i; i \in I\}$ is a nonempty family of (m, n)-quasi-ideal elements of M, then $\bigwedge_{i \in I} q_i$ is an (m, n)-quasi-ideal element if $(\bigwedge_{i \in I} q_i) \alpha e \wedge e\alpha(\bigwedge_{i \in I} q_i), \forall \alpha \in \Gamma$ exists.

Remark 3.3. Quasi-ideal elements are subidempotent. In *poe*- Γ -semigroups, quasi-ideal elements are subidempotent bi-ideal elements. In $\forall e\Gamma$ -semigroups, quasi-ideal elements are $r_{\alpha}l_{\alpha}$ (resp. $l_{\alpha}r_{\alpha}$)-closed. In regular *le*- Γ -semigroups, the converse of the last statement also holds (by Corollary 2.7 above and Corollary 2.3 [1]).

Let we denote by $Q_{(m,n)}$ the set of all (m, n)-quasi-ideal elements of M. In distributive le- Γ -semigroups [2], the quasi-ideal elements are exactly the intersections of the left- and right- ideal elements. The following theorem shows that the analogues property is true for the (m, n)-quasi-ideal elements, too.

Theorem 3.4. Let M be a distributive $le \cdot \Gamma$ -semigroup. Then, an element q is an (m, n)-quasi-ideal element of M if and only if there exists an (m, 0)-ideal element a and a (0, n)-ideal element b of M such that

$$q = a \wedge b.$$

Proof. (\Rightarrow) Let $a \in I_{(m,0)}$ and $b \in I_{(0,n)}$. Then, since $a, b \in Q_{(m,n)}$, we have $a \wedge b \in Q_{(m,n)}$.

(\Leftarrow) Let $q \in Q_{(m,n)}$. Then, by Lemma 2.2(3), we have

$$q = q \lor (q^m \alpha e \land e\beta q^n) = (q \lor q^m \alpha e) \land (q \lor e\beta q^n)$$
$$= \langle q \rangle_{(m,0)} \land \langle q \rangle_{(0,n)}$$

where $\langle q \rangle_{(m,0)} \in I_{(m,0)}$ and $\langle q \rangle_{(0,n)} \in I_{(0,n)}$.

It is clear that (m, 0) (resp. (0, n))-ideal elements and (m, 0) (resp. (0, n))quasi-ideal elements are the same. So, the following theorem is true:

Theorem 3.5. Let M be a distributive $le-\Gamma$ -semigroup. Then, an element q is an (m, n)-quasi-ideal element of M if and only if there exists an (m, 0)-quasi-ideal element a and a (0, n)-quasi-ideal element b of M such that

$$q = a \wedge b.$$

Since the *poe*- Γ -semigroups are semilattices under \wedge , we have the following theorem.

Theorem 3.6. Let M be a poe- Γ -semigroup. Then the element

 $q = a \wedge b$

where a is an (m,0)-ideal element and b an (0,n)-ideal element of M, is a (m,n)-quasi-ideal element of M.

We denote by $(a)_{(m,n)}$ the (m,n)-quasi-ideal element of M generated by $a \in M$.

Lemma 3.7. Let M be an le- Γ -semigoup, $a \in M, \alpha, \beta, \gamma, \rho \in \Gamma$ and $m, n \in \mathbb{Z}^+$. The following hold true:

- (1) $(a \lor (a^m \alpha e \land e \beta a^n))^m \gamma e \le a^m \gamma e.$
- (2) $e\gamma(a \lor (a^m \alpha e \land e\beta a^n))^m \le e\gamma a^n$.
- (3) $(a)_{(m,n)}$ exists and $(a)_{(m,n)} = a \vee (a^m \alpha e \wedge e\beta a^n).$

Proof. (1) Since for m = 0 it is clear. Let $m \ge 1$. Then we have

 $(a \lor (a^{m} \alpha e \land e\beta a^{n}))^{m} \gamma e$ $= (a \lor (a^{m} \alpha e \land e\beta a^{n}))^{m-1} \rho (a \lor (a^{m} \alpha e \land e\beta a^{n})) \gamma e$ $\leq (a \lor (a^{m} \alpha e \land e\beta a^{n}))^{m-1} \rho (a \gamma e \lor (a^{m} \alpha e^{2} \land e\beta a^{n} \gamma e))$ $= (a \lor (a^{m} \alpha e \land e\beta a^{n}))^{m-1} \rho a \gamma e$ $= (a \lor (a^{m} \alpha e \land e\beta a^{n}))^{m-2} \rho (a \lor (a^{m} \alpha e \land e\beta a^{n})) \rho a \gamma e$ $\leq (a \lor (a^{m} \alpha e \land e\beta a^{n}))^{m-2} \rho (a^{2} \gamma e \lor (a^{m} \alpha e\rho a \gamma e \land e\beta a^{n+1} \gamma e))$ $= (a \lor (a^{m} \alpha e \land e\beta a^{n}))^{m-2} \rho a^{2} \gamma e$ \vdots $\leq a^{m} \gamma e.$

(2) It is proved similarly.

(3) Let $m, n \ge 0$. From (1) and (2) we have $\forall \alpha, \beta \in \Gamma$

$$(a \lor (a^m \alpha e \land e\beta a^n))^m \alpha e \land e\beta (a \lor (a^m \alpha e \land e\beta a^n))^n \le a^m \alpha e \land e\beta a^n$$

hence $a \vee (a^m \alpha e \wedge e \beta a^n)$ is an (m, n)-quasi-ideal element of M containing a. Now, if b is an (m, n)-quasi-ideal element of M such that $b \geq a$, then $a \vee (a^m \alpha e \wedge e \beta a^n) \leq b$.

Remark 3.8. In general in le- Γ -semigroups, $\langle a \rangle_{(m,n)} \leq (a)_{(m,n)}$. In particular, $\langle a \rangle_{(m,0)} = (a)_{(m,0)}$ and $\langle a \rangle_{(0,n)} = (a)_{(0,n)}$.

Theorem 3.9. Let M be an le- Γ -semigroup and $m, n \in \mathbb{Z}^+$. Then the following are equivalent:

- (1) M is (m, n)-regular.
- (2) $a^m \alpha e \beta a^n = a, \forall a \in I_{(m,n)}, \alpha, \beta \in \Gamma.$
- (3) $q^m \alpha e \beta q^n = q, \forall q \in Q_{(m,n)}, \alpha, \beta \in \Gamma.$
- (4) $(\langle a \rangle_{(m,n)})^m \alpha e \beta(\langle a \rangle_{(m,n)})^n = \langle a \rangle_{(m,n)}, \, \forall a \in M, \alpha, \beta \in \Gamma.$
- (5) $((a)_{(m,n)})^m \alpha e \beta((a)_{(m,n)})^n = (a)_{(m,n)}, \forall a \in M, \alpha, \beta \in \Gamma.$

Proof. $(1) \Rightarrow (2)$. It is obvious by Theorem 2.4.

 $(2) \Rightarrow (3)$. It is obvious by Remark 3.2.

 $(3) \Rightarrow (1)$. Let $a \in M$. By Theorem 3.5 it follows that the element $\langle a \rangle_{(m,0)} \land \langle a \rangle_{(0,n)}$ is an (m,n)-quasi-ideal element of M. Thus, by (3) and Lemma 2.3,

$$a \leq \langle a \rangle_{(m,0)} \wedge \langle a \rangle_{(0,n)} = (\langle a \rangle_{(m,0)} \wedge \langle a \rangle_{(0,n)})^m \alpha e \beta (\langle a \rangle_{(m,0)} \wedge \langle a \rangle_{(0,n)})^n \leq (\langle a \rangle_{(m,0)})^m \alpha e \beta (\langle a \rangle_{(0,n)})^n = a^m \alpha e \beta a^n.$$

 $(2) \Rightarrow (4)$. It is clear.

(4) \Rightarrow (2). If $a \in I_{(m,n)}$, then $\langle a \rangle_{(m,n)} = a$ and by 4), we have $a^m \alpha e \beta a^n = a$.

(3) \Rightarrow (5). The proof is similar with the previous case of (m, n)-ideal elements.

Remark 3.10. From all above, it is clear that the implications $(1) \Rightarrow (2) \Rightarrow (3)$ hold in *poe*- Γ -semigroups, and the equivalence $(2) \Leftrightarrow (4)$ in $\forall e$ - Γ -semigroups in general.

Remark 3.11. In regular poe- Γ -semigroups, we have $I_{(m,n)} = Q_{(m,n)}$. For every element a of a poe- Γ -semigroup M and $\alpha, \beta, \delta, \rho \in \Gamma$, we have

$$\begin{array}{ll} a^{m}\alpha e \wedge e\beta a^{n} & \leq & (a^{m}\alpha e \wedge e\beta a^{n})\delta e\rho(a^{m}\alpha e \wedge e\beta a^{n}) \leq (a^{m}\alpha e)\delta e\rho(e\beta a^{n}) \\ & \leq & a^{m}\alpha e\beta a^{n} \leq a^{m}\alpha e \wedge e\beta a^{n}. \end{array}$$

So, in regular poe- Γ -semigroups, we have $a^m \alpha e \beta a^n = a^m \alpha e \wedge e \beta a^n$.

References

- K. Hila, Characterizations on regular le-Γ-semigroups, Math. Sci. Res. J. 10 (2006), no. 5, 121–130.
- [2] _____, Some elements and Green's relation H in le-Γ-semigroups, Far East J. Math. Sci. (FJMS) 21 (2006), no. 2, 153–161.
- [3] _____, Filters in ordered Γ -semigroups, Rocky Mountain J. Math. **41** (2011), no. 1, 189–203.
- [4] _____, On quasi-prime, weakly quasi-prime left ideals in ordered Γ-semigroups, Math. Slovaca 60 (2010), no. 2, 195–212.
- [5] _____, On some classes of le-Γ-semigroups, Algebras Groups Geom. 24 (2007), no. 4, 485–496.
- [6] K. Hila and E. Pisha, On lattice-ordered Rees matrix Γ -semigroups, An. Stiint. Univ. Al. I. Cuza Iasi, Mat., accepted, to appear.
- [7] K. Iseki, On (m, n)-antiideals in semigroup, Proc. Japan Acad. 38 (1962), 316–317.
- [8] N. Kehayopulu, On (m,n)-regular le-semigroups, Math. Balkanica 5 (1975), no. 27, 152–154.
- [9] _____, Generalized ideal elements in poe-semigroups, Semigroup Forum 25 (1982), no. 3-4, 213–222.
- [10] D. Krgovic, On (m, n)-regular semigroups, Publ. Inst. Math. (Beograd) (N.S.) 18(32) (1975), 107–110.
- [11] D. N. Krgovic and S. Lajos, Notes on semigroups II, Karl Marx Univ. Econ., Dept. Math., Budapest 1976.
- [12] Y. I. Kwon On minimal quasi-ideal elements in poe-Γ-semigroups, Far East J. Math. Sci (FJMS) 14 (2004), no. 3, 385–392.
- [13] Y. I. Kwon and S. K. Lee, Some special elements in ordered Γ-semigroups, Kyungpook Math. J. 35 (1996), no. 3, 679–685.
- [14] S. Lajos, On generalized ideals in semigroups (In Hungarian), Matematikai Lapok 10 (351) (1959).
- [15] _____, Generalized ideals in semigroups, Acta Sci. Math. Szeged 22 (1961), 217–222.
- [16] _____, Notes on (m, n)-ideals I, Proc. Japan Acad. **39** (1963), 419–421.
- [17] _____, Notes on (m, n)-ideals II, Proc. Japan Acad. 40 (1964), 631–632.
- [18] _____, On (m, n)-ideals of semigroups, Second Hungarian Math. Congress, vol. I (1960), 42–44.
- [19] M. K. Sen, On Γ-semigroups, Algebra and its applications (New Delhi, 1981), 301–308, Lecture Notes in Pure and Appl. Math., 91, Dekker, New York, 1984.
- [20] M. K. Sen and N. K. Saha, On Γ-semigroup. I, Bull. Calcutta Math. Soc. 78 (1986), no. 3, 180–186.

KOSTAQ HILA AND EDMOND PISHA

Kostaq Hila Department of Mathematics and Computer Science University of Gjirokastra Gjirokastra 6001, Albania *E-mail address*: kostaq.hila@yahoo.com

Edmond Pisha Department of Mathematics Faculty of Natural Sciences University of Tirana Tirana, Albania *E-mail address*: pishamondi@yahoo.com