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GENERALIZED IDEAL ELEMENTS IN le-Γ-SEMIGROUPS

Kostaq Hila and Edmond Pisha

Abstract. In this paper we introduce and give some characterizations
of (m,n)-regular le-Γ-semigroup in terms of (m,n)-ideal elements and

(m,n)-quasi-ideal elements. Also, we give some characterizations of subid-
empotent (m,n)-ideal elements in terms of rα- and lα- closed elements.

1. Introduction and preliminaries

In 1981, Sen [19] introduced the concept and notion of the Γ-semigroup as a
generalization of semigroup and of ternary semigroup. Many classical notions
and results of the theory of semigroups have been extended and generalized to
Γ-semigroups. We [1, 2, 5] introduced and gave several other properties and
characterizations in le-Γ-semigroups in general and regular le-Γ-semigroups
in particular. The concept of generalized ideals and (m,n)-ideals elements
in semigroups have been introduced by Lajos in [14] as a generalization of
one-sided (left or right) ideals in semigroups and it was studied by several
authors such as [7], [10], [11], [15], [16], [17], [18] and others. Kehayopulu [8, 9]
generalized this concept and several results related in poe-and le-semigroups.
In this paper we extend these concepts and results in le-Γ-semigroups. During
this paper we introduce and give some characterizations of (m,n)-regular le-
Γ-semigroup in terms of (m,n)-ideal elements and (m,n)-quasi-ideal elements.
Also, we give some characterizations of subidempotent (m,n)-ideal elements in
terms of rα- and lα- closed elements with respect to appropriate elements.

We introduce below necessary notions and present a few auxiliary results
that will be used throughout the paper.

In 1986, Sen and Saha [20] defined Γ-semigroup as a generalization of semi-
group and ternary semigroup as follows:

Definition 1.1. Let M and Γ be two non-empty sets. Denote by the letters
of the English alphabet the elements of M and with the letters of the Greek
alphabet the elements of Γ. Then M is called a Γ-semigroup if
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(1) aγb ∈ M for all a, b ∈ M and γ ∈ Γ.
(2) (aαb)βc = aα(bβc) for all a, b, c ∈ M and α, β ∈ Γ.
(3) If m1,m2,m3,m4 ∈ M,γ1, γ2 ∈ Γ such that m1 = m3, γ1 = γ2 and

m2 = m4, then m1γ1m2 = m3γ2m4.

Example 1.2. Let M be a semigroup and Γ be any non-empty set. If we
define aγb = ab for all a, b ∈ M and γ ∈ Γ. Then M is a Γ-semigroup.

Example 1.3. Let M be a set of all negative rational numbers. Obviously M
is not a semigroup under usual product of rational numbers. Let Γ = {− 1

p : p

is prime}. Let a, b, c ∈ M and α ∈ Γ. Now if aαb is equal to the usual product
of rational numbers a, α, b, then aαb ∈ M and (aαb)βc = aα(bβc). Hence M
is a Γ-semigroup.

Example 1.4. Let M = {−i, 0, i} and Γ = M . Then M is a Γ-semigroup
under the multiplication over complex numbers while M is not a semigroup
under complex number multiplication.

These examples show that every semigroup is a Γ-semigroup and Γ-semi-
groups are a generalization of semigroups.

A Γ-semigroup M is called a commutative Γ-semigroup if for all a, b ∈ M
and γ ∈ Γ, aγb = bγa. A nonempty subset K of a Γ-semigroup M is called a
sub-Γ-semigroup of M if for all a, b ∈ K and γ ∈ Γ, aγb ∈ K.

Example 1.5. Let M = [0, 1] and Γ = { 1
n |n is a positive integer}. Then M is

a Γ-semigroup under usual multiplication. Let K = [0, 1/2]. We have that K
is a nonemtpy subset of M and aγb ∈ K for all a, b ∈ K and γ ∈ Γ. Then K
is a sub-Γ-semigroup of M .

Different examples can be found in [1, 3, 4, 19, 20].

Definition 1.6. A po-Γ-semigroup (: ordered Γ-semigroup) is an ordered set
M at the same time a Γ-semigroup such that for all a, b, c ∈ M and for all
γ ∈ Γ

a ≤ b ⇒ aγc ≤ bγc, cγa ≤ cγb.

A poe-Γ-semigroup is a po-Γ-semigroup M with a greatest element “e” (i.e.,
e ≥ a, ∀a ∈ M).

In a po-Γ-semigroup M , a is called a right (resp. left) ideal element if
aαb ≤ a (resp. bαa ≤ a) for all b ∈ M and for all α ∈ Γ. And a is called an
ideal element if it is both a right and left ideal element. In a poe-Γ-semigroup
M , a is called right (resp. left) ideal element if aαe ≤ a (resp. eαa ≤ a) for all
α ∈ Γ.

Examples of ordered Γ-semigroups can be found in [3, 4, 6].

For nonempty subsets A and B of M and a nonempty subset Γ′ of Γ, let
AΓ′B = {aγb : a ∈ A, b ∈ B and γ ∈ Γ′}. If A = {a}, then we also write
{a}Γ′B as aΓ′B, and similarly if B = {b} or Γ′ = {γ}.

Let T be a sub-Γ-semigroup of M . For A ⊆ T we denote
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(A]T = {t ∈ T |t ≤ a for some a ∈ A},
[A)T = {t ∈ T |t ≥ a for some a ∈ A}.

An element a of a po-Γ-semigroup M is called regular if there exists b ∈ M
such that a ≤ aαbβa for some α, β ∈ Γ. A po-Γ-semigroup M is called regular
if every element of M is regular. The following are equivalent:

(1) For every A ⊆ M,A ⊆ (AΓMΓA],
(2) For every element a ∈ M,a ∈ (aΓMΓa].

An element a of a poe-Γ-semigroup is called a quasi-ideal element if eαa∧aαe
exists and aαe ∧ eαa ≤ a for all α ∈ Γ. We denote by q(a) the quasi-ideal
element of M generated by a, i.e., the least quasi-ideal element of M containing
a. We say that a ∈ M is a bi-ideal element of M if and only if aαeβa ≤ a,
∀α, β ∈ Γ.

Definition 1.7. Let M be a semilattice under ∨ with a greatest element e
and at the same time a po-Γ-semigroup such that for all a, b, c ∈ M and for all
γ ∈ Γ

aγ(b ∨ c) = aγb ∨ aγc

and

(a ∨ b)γc = aγc ∨ bγc.

Then M is called a ∨e-Γ-semigroup.

A ∨e-Γ-semigroup which is also a lattice is called an le-Γ-semigroup.
The usual order relation ≤ on M is defined in the following way

a ≤ b ⇔ a ∨ b = b.

Then we can show that for any a, b, c ∈ M and γ ∈ Γ, a ≤ b implies aγc ≤ bγc
and cγa ≤ cγb.

Example 1.8 ([1]). Let (X,≤) and (Y,≤) be two finite chains. Let M be
the set of all isotone mappings from X into Y and Γ be the set of all isotone
mappings from Y into X. Let f, g ∈ M and α ∈ Γ. We define fαg to denote
the usual mapping composition of f, α and g. Then M is a Γ-semigroup. For
f, g ∈ M , the mappings f ∨ g and f ∧ g are defined by letting, for each a ∈ X

(f ∨ g)(a) = max{f(a), g(a)}, (f ∧ g)(a) = min{f(a), g(a)}

(the maximum and minimum are considered with respect to the order ≤ in X
and Y ). The greatest element e is the mapping that sends every a ∈ X to the
greatest element of finite chains (Y,≤). Then M is an le-Γ-semigroup.

Example 1.9 ([1]). Let M be a po-Γ-semigroup. Let M1 be the set of all
ideals of M . Then (M1,⊆,∩,∪) is an le-Γ-semigroup.

Example 1.10 ([1]). Let M be a po-Γ-semigroup. Let M1 = P (M) be the set
of all subsets of M and Γ1 = P (Γ) the set of all subsets of Γ. Then M1 is a
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po-Γ1-semigroup if

AΛB =

{
(A](Λ](B] = (AΛB] if A,B ∈ M1\{∅},Λ ∈ Γ1\{∅}
∅ if A = ∅ or B = ∅.

Then (M1,⊆,∩,∪) is an le-Γ1-semigroup.

Example 1.11. Let G be a group, I,∧ two index sets and Γ the collection of
some ∧×I matrices over Go = G∪{0}, the group with zero. Let µo be the set of
all elements (a)iλ where i ∈ I, λ ∈ ∧ and (a)iλ the I×∧ matrix over Go having
a in the i-th row and λ-th column, its remaining entries being zero. The expres-
sion (0)iλ will be used to denote the zero matrix. For any (a)iλ, (b)jµ, (c)kν ∈ µo

and α = (pλi), β = (qλi) ∈ Γ we define (a)iλα(b)jµ = (apλjb)iµ. Then it is
easy verified that [(a)iλα(b)jµ]β(c)kν = (a)iλα[(b)jµβ(c)kν ]. Thus µo is a Γ-
semigroup. We call Γ the sandwich matrix set and µo the Rees I×∧ matrix Γ-
semigroup over Go with sandwich matrix set Γ and denote it by µo(G : I,∧,Γ).
In [6] we deal with lattice-ordered Rees matrix Γ-semigroups.

If M is a ∨e-Γ-semigroup, then every map φ : M → M is called a topology
on M [1]. A topology φ on M is said to be an:

(1) S-topology on M if and only if a1, a2 ∈ M , with a1 ≤ a2 implies
φ(a1) ≤ φ(a2).

(2) I-topology on M if and only if a ∈ M , implies a ≤ φ(a).
(3) U -topolgy on M if and only if φ(φ(a)) = φ(a) for every a ∈ M .

An element a ∈ M is called a closed element of M related to a topology φ
(or φ-closed) if and only if φ(a) = a. The set of all closed element of M related
to φ will be denoted by Fφ.

In a ∨e-Γ-semigroup M , we define two mappings rα and lβ for each α, β ∈ Γ
as follows:

rα : M → M, rα(a) = aαe ∨ a,

lβ : M → M, lβ(a) = eβa ∨ a

for all a ∈ M .
It is clear that rα and lβ , for α, β ∈ Γ, are I- and S-topologies on M . If M

is an le-Γ-semigroup, then rα and lβ are U -topologies on M .
For other definitions and terminologies not given in this paper, the reader is

refered to [1], [19], [20].

2. On (m,n)-ideal elements in le-Γ-semigroups

Let M be a ∨e-Γ-semigroup and m,n ∈ Z+.

Definition 2.1. An element a ∈ M is called an (m,n)-ideal element of M if

(aγ1aγ2a . . . γm−1a)αeβ(aρ1aρ2a . . . ρn−1a) ≤ a

for all α, β ∈ Γ and for some γ1, γ2, . . . , γm−1, ρ1, . . . , ρn−1 ∈ Γ.
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a0 is defined such that a0γb = bγa0 = b (b ∈ M,γ ∈ Γ).
For m = 0, n = 1 (resp. m = 1, n = 0) Definition 2.1 give us the trivial case

of left (resp. right)-ideal elements. It is clear that the right (resp. left)-ideal
elements are (m, 0) (resp. (0, n))-ideal elements for every m ≥ 1 (resp. n ≥ 1).

An le-Γ-semigroup is called subidempotent if aαa ≤ a for all a ∈ M,α ∈ Γ.

In the sequel of the paper, for the sake of simplicity, we denote am =
aγ1aγ2a . . . γm−1a for some γ1, γ2, . . . , γm−1 ∈ Γ and for some m ∈ Z+.

It can be easily proved the following statements:

(1) Let M be a poe-Γ-semigroup and a, b two (m,n)-ideal elements of M .
Then the intersection a ∧ b if exists is an (m,n)-ideal element of M .

(2) Let M be a poe-Γ-semigroup. Then the k-power (k ≥ 1) of an (m,n)-
ideal element is also an (m,n)-ideal element.

(3) Let M be a poe-Γ-semigroup. If a is an (m,n)-ideal element of M
(m,n ≥ 1), then for every b ∈ M,α ∈ Γ such that aαb ≤ a (resp.
bαa ≤ a), the products aαb and bαa are (m,n)-ideal elements of M .
For m = n = 1 we have: If a is a bi-ideal element, then aγb and bγa,
γ ∈ Γ, are bi-ideal elements, for all b ∈ M . Clearly, ∀α, β, γ ∈ Γ,

(aγb)αeβ(aγb) = (aγb)α(eβa)γb ≤ (aγb)αeγb = aγ(bαeγb) ≤ aγb,

similarly (bγa)αeβ(bγa) ≤ bγa.
(4) LetM be a ∨e-Γ-semigroup and a, b two left (resp. right)-ideal elements

of M . Then the union a ∨ b is a subidempotent (m,n)-ideal element,
∀m ≥ 0,∀n ≥ 1 (resp. n ≥ 0,m ≥ 1).

In the following, ⟨a⟩(m,n) will be denoted the principal (m,n)-ideal element
of M generated by a, i.e., the least ⟨m,n⟩-ideal element of M containing a and
by I(m,n) the set of all (m,n)-ideal elements of M .

Definition 2.2. Let M be a ∨e-Γ-semigroup and m,n ∈ Z+. M is called
(m,n)-regular if

a ≤ (aγ1aγ2a . . . γm−1a)αeβ(aρ1aρ2a . . . ρn−1a)

for all a ∈ M,α, β ∈ Γ and for some γ1, γ2, . . . , γm−1, ρ1, . . . , ρn−1 ∈ Γ.

Lemma 2.3. Let M be a ∨e-Γ-semigroup and m,n, k ∈ Z+. Then the following
hold true:

(1) (a ∨ amαeβak)mγe = amγe, ∀a ∈ M,α, β, γ ∈ Γ.
(2) eγ(a ∨ akαeβan)n = eγan, ∀a ∈ M,α, β, γ ∈ Γ.
(3) ⟨a⟩(m,n) = a ∨ amαeβan, ∀a ∈ M,α, β,∈ Γ.

Proof. We prove the first two conditions in case m,n ≥ 1, since the case m = 0
or n = 0 is obvious. For a ∈ M,α, β, ρ ∈ Γ, we have

(1) (a ∨ amαeβak)mγe = ((a ∨ amαeβak)ρ)m−1(a ∨ amαeβak)γe = ((a ∨
amαeβak)ρ)m−1((aγe∨amαeβakγe)=((a∨amαeβak)ρ)m−1aγe=((a∨amαeβak)
ρ)m−2(a ∨ amαeβak)ρaγe = ((a ∨ amαeβak)ρ)m−2(aρaγe ∨ amαeβak+1γe) =
((a ∨ amαeβak)ρ)m−2a2γe = · · · = amγe.
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The proof of (2) is analogues to that of (1).

(3) Let m,n ≥ 0, α, β ∈ Γ. Then, (a ∨ amαeβan)mαeβ(a ∨ amαeβan)n =
amαeβan (by (1) and (2)), so that a ∨ amαeβan ∈ I(m,n). Now, if b is an
(m,n)-ideal element of M containing a, then a ∨ amαeβan ≤ b. This finishes
the proof. □

Theorem 2.4. A ∨e-Γ-semigroup M is (m,n)-regular if and only if

(∗) amαeβan = a, ∀a ∈ I(m,n), ∀α, β ∈ Γ.

Proof. (⇒) This statement is obvious.
(⇐) Let a ∈ M,α, β ∈ Γ. Since ⟨a⟩(m,n) ∈ I(m,n), we have:

(⟨a⟩(m,n))
mαeβ(⟨a⟩(m,n))

n = ⟨a⟩(m,n)

But, (⟨a⟩(m,n))
mαe = amαe (by Lemma 2.3(3),(1)), and eβ(⟨a⟩(m,n))

n = eβan

(by Lemma 2.3(3),(2)).
Thus, a ≤ amαeβan and M is (m,n)-regular. □

Theorem 2.5. Let M be a subidempotent le-Γ-semigroup. Then M is (m,n)-
regular if and only if

(∗∗) a ∧ b = amαb ∧ aβbn, ∀a ∈ I(m,0), b ∈ I(0,n), α, β ∈ Γ.

Proof. (⇒) Let M be a (m,n)-regular le-Γ-semigroup. Let a ∈ I(m,0) and
b ∈ I(0,n). Then, a

mαe ≤ a and eβbn ≤ b, hence amαb∧aβbn ≤ amαe∧eβbn ≤
a ∧ b. On the other hand, a ∧ b ≤ (a ∧ b)mαeβ(a ∧ b)n ≤ amαeβbn ≤ amαb,
similarly, a ∧ b ≤ aβbn, hence a ∧ b ≤ amαb ∧ aβbn.

(⇐) Since M is a (0,0)-regular le-Γ-semigroup, the the statement is true for
m = n = 0.

Let m ̸= 0, n = 0. If a ∈ I(m,0), then since e is a (0,0)-ideal element of M ,
we have by (∗∗), that a = amαe, α ∈ Γ, so that M is (m, 0)-regular (Theorem
2.4). The proof in the case m = 0, n ̸= 0 is analogues.

Now, let m ̸= 0, n ̸= 0. Then, M has the property:

(∗ ∗ ∗) a ∧ b ≤ aαb, ∀a ∈ I(m,0), ∀b ∈ I(0,n), ∀α ∈ Γ.

Indeed: let a ∈ I(m,0). Then ∀α ∈ Γ,

a ∧ b = amαb ∧ aαbn ≤ aαb (m ≥ 1, n ≥ 1).

Now, let a ∈ M . Since ⟨a⟩(m,0) ∈ I(m,0) and e is a (0, n)-ideal element of M ,
we have by (∗∗), that ∀α, β ∈ Γ

⟨a⟩(m,0) = (⟨a⟩(m,0))
mαe ∧ ⟨a⟩(m,0)βe

n

≤ (⟨a⟩(m,0))
mαe = amαe (by Lemma 2.3(3),(1)),

thus ⟨a⟩(m,0) = amαe. Similarly, ⟨a⟩(0,n) = eβan. On the other hand,

a ≤ ⟨a⟩(m,0) ∧ ⟨a⟩(0,n) ≤ ⟨a⟩(m,0)γ⟨a⟩(0,n), ∀γ ∈ Γ(by(∗ ∗ ∗))
= amαe2βan ≤ amαeβan.



GENERALIZED IDEAL ELEMENTS IN le-Γ-SEMIGROUPS 379

Therefore, M is (m,n)-regular, and this finishes the proof. □

Theorem 2.6. Let M be a poe-Γ-semigroup and m,n ∈ Z+ with m + n ≥ 1.
Let be the following statements for a ∈ M,ρ ∈ Γ:

(1) ∃ai ∈ F
(ai−1)
rρ , i = 1, 2, . . . ,m and

∃bj ∈ F
(bj−1)
lρ

, j = 1, 2, . . . , n where

a0 = e, b0 = am and bn = a (resp. b0 = e, a0 = bn and am = a).
(2) a is a subidempotent (m,n)-ideal element of M .

Then, (1) ⇒ (2). In particular, if M is a ∨e-Γ-semigroup, then (1) ⇔ (2).

Proof. (1) ⇒ (2). In fact a is subidempotent, and for α, β, ρ ∈ Γ, we have:

bmn αeβbnn = (bnρ)
m−1bnαeβb

n
n ≤ (bnρ)

m−1a1αeβb
n
n

≤ (bnρ)
m−1a1βb

n
n = (bnρ)

m−2bnρa1βb
n
n ≤ (bnρ)

m−2a2ρa1βb
n
n

≤ (bnρ)
m−2a2βb

n
n ≤ · · · ≤ (bnρ)

m−(m−1)am−1βb
n
n

= bnρam−1βb
n
n ≤ amρam−1βb

n
n ≤ amβbnn

= amβbnρb
n−1
n ≤ amβb1ρb

n−1
n ≤ b1ρb

n−1
n

= b1ρbnρb
n−2
n ≤ b1ρb2ρb

n−2
n ≤ b2ρb

n−2
n

≤ · · · ≤ bn−1ρb
n−(n−1)
n = bn−1ρbn ≤ bn.

(2) ⇒ (1). Let M be a ∨e-Γ-semigroup and let a be a subidempotent ⟨m,n⟩-
ideal element of M . We put:

ai = ⟨a⟩(i,0), i = 0, 1, 2, . . . ,m and bj = ⟨a⟩(m,j), j = 0, 1, 2, . . . , n.

Then, by Lemma 2.3(3), we have ∀α, ρ ∈ Γ,

ai = ⟨a⟩(i,0) = a ∨ aiαe = a ∨ (aρ)i−1aαe ≤ a ∨ ai−1αe

= ⟨a⟩(i−1,0) = ai−1, i = 1, 2, . . . ,m

and ∀δ, γ, ρ ∈ Γ

bj = ⟨a⟩(m,j) = a ∨ amδeγaj = a ∨ amδeγaρaj−1 ≤ a ∨ amδeγaj−1

= ⟨a⟩(m,j−1) = bj−1, j = 1, 2, . . . , n.

Also, a0 = e, b0 = am and bn = a. Moreover,

aiρai−1 = ⟨a⟩(i,0)ρ⟨a⟩(i−1,0) = (a ∨ aiαe)ρ(a ∨ ai−1αe)

= a2 ∨ aiαeρa ∨ aiαe ∨ aiαeρai−1αe ≤ a ∨ aiαe

= ⟨a⟩(i,0) = ai, i = 1, 2, . . . ,m

that is,

ai ∈ F (ai−1)
rρ , i = 1, 2, . . . ,m.
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Also, ∀δ, γ, ρ ∈ Γ

⟨a⟩(m,j−1)ρ⟨a⟩(m,j)

= (a ∨ amδeγaj−1)ρ(a ∨ amδeγaj)

= a2 ∨ amδeγaj ∨ am+1δeγaj ∨ amδeγaj−1+mδeγaj

≤ a ∨ amδeγaj = ⟨a⟩(m,j), j = 1, 2, . . . , n.

Therefore,

bj−1ρbj ≤ bj , j = 1, 2, . . . , n

that is,

bj ∈ F
(bj−1)
lρ

, j = 1, 2, . . . , n.

The other case can be proved similarly. In that case, for (2) ⇒ (1) we put:

bj = ⟨a⟩(0,j), j = 0, 1, 2, . . . , n

and

ai = ⟨a⟩(i,n), i = 0, 1, 2, . . . ,m.

LetM be a poe-Γ-semigroup. An element a ∈ M is called rαlα-closed, α ∈ Γ,
if there exists a right-ideal element b ∈ M such that a is lα-closed with respect
to b. Similarly, a is called lαrα-closed, if there exists a left-ideal element b with

a ∈ F
(b)
rα . □

Corollary 2.7. Let M be a poe-Γ-semigroup. Then all rαlα-closed and lαrα-
closed elements are subidempotent bi-ideal elements. In particular, if M is a
∨e-Γ-semigroup, the preceding three classes of elements are the same.

3. On (m,n)-quasi-ideal elements in le-Γ-semigroups

Definition 3.1. Let M be a poe-Γ-semigroup. An element q of M is called an
(m,n)-quasi-ideal element of M if qmαe ∧ eβqn exists and qmαe ∧ eβqn ≤ q,
α, β ∈ Γ.

Remark 3.2. Every quasi-ideal element q of a poe-Γ-semigroup M is an (m,n)-
quasi-ideal element of M for all m,n ∈ Z+ such that qmαe ∧ eβqn exists. For
m,n ∈ Z+, every (m,n)-quasi-ideal element is an (m,n)-ideal element of M .
If {qi; i ∈ I} is a nonempty family of (m,n)-quasi-ideal elements of M , then∧

i∈I qi is an (m,n)-quasi-ideal element if (
∧

i∈I qi)αe ∧ eα(
∧

i∈I qi), ∀α ∈ Γ
exists.

Remark 3.3. Quasi-ideal elements are subidempotent. In poe-Γ-semigroups,
quasi-ideal elements are subidempotent bi-ideal elements. In ∨eΓ-semigroups,
quasi-ideal elements are rαlα (resp. lαrα)-closed. In regular le-Γ-semigroups,
the converse of the last statement also holds (by Corollary 2.7 above and Corol-
lary 2.3 [1]).
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Let we denote by Q(m,n) the set of all (m,n)-quasi-ideal elements of M .
In distributive le-Γ-semigroups [2], the quasi-ideal elements are exactly the

intersections of the left- and right- ideal elements. The following theorem shows
that the analogues property is true for the (m,n)-quasi-ideal elements, too.

Theorem 3.4. Let M be a distributive le-Γ-semigroup. Then, an element q
is an (m,n)-quasi-ideal element of M if and only if there exists an (m, 0)-ideal
element a and a (0, n)-ideal element b of M such that

q = a ∧ b.

Proof. (⇒) Let a ∈ I(m,0) and b ∈ I(0,n). Then, since a, b ∈ Q(m,n), we have
a ∧ b ∈ Q(m,n).

(⇐) Let q ∈ Q(m,n). Then, by Lemma 2.2(3), we have

q = q ∨ (qmαe ∧ eβqn) = (q ∨ qmαe) ∧ (q ∨ eβqn)

= ⟨q⟩(m,0) ∧ ⟨q⟩(0,n)

where ⟨q⟩(m,0) ∈ I(m,0) and ⟨q⟩(0,n) ∈ I(0,n). □

It is clear that (m, 0) (resp. (0, n))-ideal elements and (m, 0) (resp. (0, n))-
quasi-ideal elements are the same. So, the following theorem is true:

Theorem 3.5. Let M be a distributive le-Γ-semigroup. Then, an element q is
an (m,n)-quasi-ideal element of M if and only if there exists an (m, 0)-quasi-
ideal element a and a (0, n)-quasi-ideal element b of M such that

q = a ∧ b.

Since the poe-Γ-semigroups are semilattices under ∧, we have the following
theorem.

Theorem 3.6. Let M be a poe-Γ-semigroup. Then the element

q = a ∧ b

where a is an (m, 0)-ideal element and b an (0, n)-ideal element of M , is a
(m,n)-quasi-ideal element of M .

We denote by (a)(m,n) the (m,n)-quasi-ideal element of M generated by
a ∈ M .

Lemma 3.7. Let M be an le-Γ-semigoup, a ∈ M,α, β, γ, ρ ∈ Γ and m,n ∈ Z+.
The following hold true:

(1) (a ∨ (amαe ∧ eβan))mγe ≤ amγe.
(2) eγ(a ∨ (amαe ∧ eβan))m ≤ eγan.
(3) (a)(m,n) exists and (a)(m,n) = a ∨ (amαe ∧ eβan).
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Proof. (1) Since for m = 0 it is clear. Let m ≥ 1. Then we have

(a ∨ (amαe ∧ eβan))mγe

= (a ∨ (amαe ∧ eβan))m−1ρ(a ∨ (amαe ∧ eβan))γe

≤ (a ∨ (amαe ∧ eβan))m−1ρ(aγe ∨ (amαe2 ∧ eβanγe))

= (a ∨ (amαe ∧ eβan))m−1ρaγe

= (a ∨ (amαe ∧ eβan))m−2ρ(a ∨ (amαe ∧ eβan))ρaγe

≤ (a ∨ (amαe ∧ eβan))m−2ρ(a2γe ∨ (amαeρaγe ∧ eβan+1γe))

= (a ∨ (amαe ∧ eβan))m−2ρa2γe

...

≤ amγe.

(2) It is proved similarly.
(3) Let m,n ≥ 0. From (1) and (2) we have ∀α, β ∈ Γ

(a ∨ (amαe ∧ eβan))mαe ∧ eβ(a ∨ (amαe ∧ eβan))n ≤ amαe ∧ eβan

hence a ∨ (amαe ∧ eβan) is an (m,n)-quasi-ideal element of M containing
a. Now, if b is an (m,n)-quasi-ideal element of M such that b ≥ a, then
a ∨ (amαe ∧ eβan) ≤ b. □

Remark 3.8. In general in le-Γ-semigroups, ⟨a⟩(m,n) ≤ (a)(m,n). In particular,
⟨a⟩(m,0) = (a)(m,0) and ⟨a⟩(0,n) = (a)(0,n).

Theorem 3.9. Let M be an le-Γ-semigroup and m,n ∈ Z+. Then the following
are equivalent:

(1) M is (m,n)-regular.
(2) amαeβan = a, ∀a ∈ I(m,n), α, β ∈ Γ.
(3) qmαeβqn = q, ∀q ∈ Q(m,n), α, β ∈ Γ.
(4) (⟨a⟩(m,n))

mαeβ(⟨a⟩(m,n))
n = ⟨a⟩(m,n), ∀a ∈ M,α, β ∈ Γ.

(5) ((a)(m,n))
mαeβ((a)(m,n))

n = (a)(m,n), ∀a ∈ M,α, β ∈ Γ.

Proof. (1) ⇒ (2). It is obvious by Theorem 2.4.
(2) ⇒ (3). It is obvious by Remark 3.2.
(3) ⇒ (1). Let a ∈ M . By Theorem 3.5 it follows that the element ⟨a⟩(m,0)∧

⟨a⟩(0,n) is an (m,n)-quasi-ideal element of M . Thus, by (3) and Lemma 2.3,

a ≤ ⟨a⟩(m,0) ∧ ⟨a⟩(0,n)
= (⟨a⟩(m,0) ∧ ⟨a⟩(0,n))mαeβ(⟨a⟩(m,0) ∧ ⟨a⟩(0,n))n

≤ (⟨a⟩(m,0))
mαeβ(⟨a⟩(0,n))n

= amαeβan.

(2) ⇒ (4). It is clear.
(4) ⇒ (2). If a ∈ I(m,n), then ⟨a⟩(m,n) = a and by 4), we have amαeβan = a.
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(3) ⇒ (5). The proof is similar with the previous case of (m,n)-ideal ele-
ments. □
Remark 3.10. From all above, it is clear that the implications (1) ⇒ (2) ⇒ (3)
hold in poe-Γ-semigroups, and the equivalence (2) ⇔ (4) in ∨e-Γ-semigroups
in general.

Remark 3.11. In regular poe-Γ-semigroups, we have I(m,n) = Q(m,n). For every
element a of a poe-Γ-semigroup M and α, β, δ, ρ ∈ Γ, we have

amαe ∧ eβan ≤ (amαe ∧ eβan)δeρ(amαe ∧ eβan) ≤ (amαe)δeρ(eβan)

≤ amαeβan ≤ amαe ∧ eβan.

So, in regular poe-Γ-semigroups, we have amαeβan = amαe ∧ eβan.
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