DOI QR코드

DOI QR Code

CENTRAL SCHEMES WITH LAX-WENDROFF TYPE TIME DISCRETIZATIONS

  • Received : 2010.01.22
  • Published : 2011.07.31

Abstract

The semi-discrete central scheme and central upwind scheme use Runge-Kutta (RK) time discretization. We do the Lax-Wendroff (LW) type time discretization for both schemes. We perform numerical experiments for various problems including two dimensional Riemann problems for Burgers' equation and Euler equations. The results show that the LW time discretization is more efficient in CPU time than the RK time discretization while maintaining the same order of accuracy.

Keywords

References

  1. W. Hwang and W. B. Lindquist, The 2-dimensional Riemann problem for a $2\times2$ hyperbolic conservation law. I. Isotropic media, SIAM J. Math. Anal. 34 (2002), no. 2, 341-358. https://doi.org/10.1137/S0036141001396631
  2. W. Hwang and W. B. Lindquist, The 2-dimensional problem for a $2\times2$ hyperbolic conservation law. II. Anisotropic media, SIAM J. Math. Anal. 34 (2002), no. 2, 359-384. https://doi.org/10.1137/S0036141001396643
  3. G. Jiang and E. Tadmor, Nonoscillatory central schemes for multidimensional hyperbolic conservation laws, SIAM J. Sci. Comput. 19 (1998), no. 6, 1892-1917. https://doi.org/10.1137/S106482759631041X
  4. A. Kurganov, S. Noelle, and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput. 23 (2001), no. 3, 707-740. https://doi.org/10.1137/S1064827500373413
  5. A. Kurganov and G. Petrova, A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems, Numer. Math. 88 (2001), no. 4, 683-729. https://doi.org/10.1007/PL00005455
  6. A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys. 160 (2000), no. 1, 241-282. https://doi.org/10.1006/jcph.2000.6459
  7. A. Kurganov and E. Tadmor, Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers, Numer. Methods Partial Differential Equations 18 (2002), no. 5, 584-608. https://doi.org/10.1002/num.10025
  8. X. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115 (1994), no. 1, 200-212. https://doi.org/10.1006/jcph.1994.1187
  9. H. Nessyahu and E. Tadmor, Nonoscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys. 87 (1990), no. 2, 408-463. https://doi.org/10.1016/0021-9991(90)90260-8
  10. J. Qiu, Hermite WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations, J. Comput. Math. 25 (2007), no. 2, 131-144.
  11. J. Qiu, WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations, J. Comput. Appl. Math. 200 (2007), no. 2, 591-605. https://doi.org/10.1016/j.cam.2006.01.022
  12. J. Qiu and C. Shu, Finite difference WENO schemes with Lax-Wendroff-Type time discretizations, SIAM J. Sci. Comput. 24 (2003), no. 6, 2185-2198. https://doi.org/10.1137/S1064827502412504
  13. D. Yoon and W. Hwang, Two-dimensional Riemann problem for Burger's equation, Bull. Korean Math. Soc. 45 (2008), no. 1, 191-205. https://doi.org/10.4134/BKMS.2008.45.1.191