References
-
W. Hwang and W. B. Lindquist, The 2-dimensional Riemann problem for a
$2\times2$ hyperbolic conservation law. I. Isotropic media, SIAM J. Math. Anal. 34 (2002), no. 2, 341-358. https://doi.org/10.1137/S0036141001396631 -
W. Hwang and W. B. Lindquist, The 2-dimensional problem for a
$2\times2$ hyperbolic conservation law. II. Anisotropic media, SIAM J. Math. Anal. 34 (2002), no. 2, 359-384. https://doi.org/10.1137/S0036141001396643 - G. Jiang and E. Tadmor, Nonoscillatory central schemes for multidimensional hyperbolic conservation laws, SIAM J. Sci. Comput. 19 (1998), no. 6, 1892-1917. https://doi.org/10.1137/S106482759631041X
- A. Kurganov, S. Noelle, and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput. 23 (2001), no. 3, 707-740. https://doi.org/10.1137/S1064827500373413
- A. Kurganov and G. Petrova, A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems, Numer. Math. 88 (2001), no. 4, 683-729. https://doi.org/10.1007/PL00005455
- A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys. 160 (2000), no. 1, 241-282. https://doi.org/10.1006/jcph.2000.6459
- A. Kurganov and E. Tadmor, Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers, Numer. Methods Partial Differential Equations 18 (2002), no. 5, 584-608. https://doi.org/10.1002/num.10025
- X. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115 (1994), no. 1, 200-212. https://doi.org/10.1006/jcph.1994.1187
- H. Nessyahu and E. Tadmor, Nonoscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys. 87 (1990), no. 2, 408-463. https://doi.org/10.1016/0021-9991(90)90260-8
- J. Qiu, Hermite WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations, J. Comput. Math. 25 (2007), no. 2, 131-144.
- J. Qiu, WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations, J. Comput. Appl. Math. 200 (2007), no. 2, 591-605. https://doi.org/10.1016/j.cam.2006.01.022
- J. Qiu and C. Shu, Finite difference WENO schemes with Lax-Wendroff-Type time discretizations, SIAM J. Sci. Comput. 24 (2003), no. 6, 2185-2198. https://doi.org/10.1137/S1064827502412504
- D. Yoon and W. Hwang, Two-dimensional Riemann problem for Burger's equation, Bull. Korean Math. Soc. 45 (2008), no. 1, 191-205. https://doi.org/10.4134/BKMS.2008.45.1.191