References
- C. Ahn, H. Choe, and K. Lee, A long time asymptotic behavior of the free boundary for an American put, Proc. Amer. Math. Soc. 137 (2009), no. 10, 3425-3436. https://doi.org/10.1090/S0002-9939-09-09900-6
- K. Amin and A. Khanna, Convergence of American option values from discrete-to continuous-time financial models, Math. Finance 4 (1994), no. 4, 289-304. https://doi.org/10.1111/j.1467-9965.1994.tb00059.x
- L. Andersen, A simple approach to the pricing of Bermudan swaptions in the multifactor LIBOR market model, J. Comput. Finance 3 (2000), 1-32.
- L. Andersen and M. Broadie, A primal-dual simulation algorithm for pricing multidimensional American options, Management Science 50 (2004), 1222-1234. https://doi.org/10.1287/mnsc.1040.0258
- G. Barone-Adesi and R. Whaley, Efficient analytic approximation of American option values, Journal of Finance 42 (1987), 301-320. https://doi.org/10.2307/2328254
- A. Bensoussan, On the theory of option pricing, Acta Appl. Math. 2 (1984), no. 2, 139-158.
- F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy 81 (1973), 637-654. https://doi.org/10.1086/260062
- M. Brennan and E. Schwartz, The valuation of American put options, Journal of Finance 32 (1977), 449-462. https://doi.org/10.2307/2326779
- M. Brennan and E. Schwartz, Finite difference methods and jump processes arising in the pricing of contingent claims: a synthesis, Journal of Financial and Quantitative Analysis 13 (1978), 461-474. https://doi.org/10.2307/2330152
- M. Broadie and J. Detemple, American option valuation: new bounds, approximations, and a comparison of existing methods, Review of Financial Studies 9 (1996), 1211-1250. https://doi.org/10.1093/rfs/9.4.1211
- M. Broadie and J. Detemple, Option pricing: valuation models and applications, Management Science 50 (2004), 1145-1177. https://doi.org/10.1287/mnsc.1040.0275
- M. Broadie and P. Glasserman, Pricing American-style securities using simulation, J. Econom. Dynam. Control 21 (1997), no. 8-9, 1323-1352. https://doi.org/10.1016/S0165-1889(97)00029-8
- P. Boyle, Options: a Monte Carlo approach, Journal of Financial Economics, 4 (1977), 328-338.
- D. A. Bunch and H. Johnson, The American put option and its critical stock price, Journal of Finance 55 (2000), 2333-2356. https://doi.org/10.1111/0022-1082.00289
- S. Byun, Numerical procedures for valuing american options, Ph. D. dissertation, KAIST, 1996.
- S. Byun and I. Kim, Relationship between American puts and calls on futures, J. Korean Soc. Ind. Appl. Math. 4 (2000), 11-20.
- P. Carr, Randomization and the American put, Review of Financial Studies 81 (1998), 597-626.
- P. Carr and D. Faguet, Valuing Finite-Lived Options as Perpetual, Working Paper, 1996.
- P. Carr, R. Jarrow, and R. Myneni, Alternative characterizations of American put options, Math. Finance 2 (1992), 87-106. https://doi.org/10.1111/j.1467-9965.1992.tb00040.x
- X. Chen and J. Chadam, A mathematical analysis for the optimal exercise boundary of American put option, SIAM J. Math. Anal. 38 (2007), 1613-1641. https://doi.org/10.1137/S0036141003437708
- N. Clarke and K. Parrot, The multigrid solution of two-factor American put options, Technical Report 96-16, (1996), Oxford Computing Laboratory, Oxford.
- J. Cox, S. Ross, and M. Rubinstein, Option pricing: a simplified approach, Journal of Financial Economics 7 (1979), 141-148.
- M. Davis and I. Karatzas, A deterministic approach to optimal stopping, with applications, in Probability, Statistics and Optimization: A Tribute to Peter Whittle, F. Kelley, ed., (1994), 455-466, Wiley.
- J. Detemple, American-Style Derivatives, Chapman & Hall/CRC Financial Mathematics Series, 2006.
- A. Dixit and R. Pindyck, Investment Under Uncertainty, Princeton University Press, 1994.
- H. Follmer, Financial uncertainty, risk measures and robust preferences, Aspects of Mathematical Finance, 3-13, Springer, Berlin, 2008.
- P. Forsyth and K. Vetzal, Quadratic convergence for valuing American options using a penalty method, SIAM J. Sci. Comput. 23 (2002), no. 6, 2095-2122. https://doi.org/10.1137/S1064827500382324
- J. Fouque, G. Papanicolau, and K. Sircar, Derivatives in Financial Markets with Stochastic Volatility, Cambridge University Press, 2000.
- B. Gao, J. Huang, and M. Subrhamanyam, The valuation of American barrier options using the decomposition technique, J. Econom. Dynam. Control 24 (2000), 1783-1827. https://doi.org/10.1016/S0165-1889(99)00093-7
- R. Geske and H. Johnson, The American put options valued analytically, Journal of Finance 39 (1984), 229-263. https://doi.org/10.2307/2327678
- I. Gilboa and Schmeidler, Maxmin expected utility with non-unique prior, J. Math. Econom. 18 (1989), 141-153. https://doi.org/10.1016/0304-4068(89)90018-9
- P. Glasserman, Monte Carlo Methods in Financial Engineering, Applications of Mathematics (New York), 53. Stoch. Model. Appl. Probab., Springer-Verlag, New York, 2004.
- O. Grabbe, The pricing of call and put options on foreign exchange, Journal of International Money and Finance 2 (1983), 239-253. https://doi.org/10.1016/S0261-5606(83)80002-3
- S. J. Grossman, The Information Role of Prices, The MIT Press, 1989.
- S. Guo and Q. Zhang, Closed-form solutions for perpetual American put options with regime switching, SIAM J. Appl. Math. 64 (2004), no. 6, 2034-2049. https://doi.org/10.1137/S0036139903426083
- S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies 6 (1993), 327-343. https://doi.org/10.1093/rfs/6.2.327
- Y. Hu and S. Tang, Multi-dimensional BSDE with oblique reflection and optimal switching, forthcoming in Probab. Theory Related Fields, 2009.
- J. Huang, M. Subrahmanyam, and G. Yu, Pricing and hedging of American options: a recursive integration method, Review of Financial Studies 9 (1996), 277-300. https://doi.org/10.1093/rfs/9.1.277
- J. Hull, Options, Futures, and Other Derivatives, 7th ed., Pearson Education, 2009.
- J. Hull and A. White, The pricing of options on assets with stochastic volatilities, Journal of Finance 42 (1987), 281-300. https://doi.org/10.2307/2328253
- S. Ikonen and J. Toivanen, Operator splitting methods for American option pricing, Appl. Math. Lett. 17 (2004), no. 7, 809-814. https://doi.org/10.1016/j.aml.2004.06.010
- S. Ikonen and J. Toivanen, Operator splitting methods for pricing American options with stochastic volatility, Technical Report B11/2004, University of Jyvaskyla, 2004.
- S. Ikonen and J. Toivanen, Componentwise splitting methods for pricing American options with stochastic volatility, Technical Report B7/2005, University of Jyvaskyla, 2005.
- S. Ikonen and J. Toivanen, Efficient numerical methods for pricing American options under stochastic volatility, Technical Report B12/2005, University of Jyvaskyla, 2005.
- S. D. Jacka, Optimal stopping and the American put, Math. Finance 1 (1991), 1-14.
- B. Jang and H. Koo, American Put Options with Regime-Switching Volatility, Working Paper, 2005.
- H. Johnson, An analytic approximation for the American put price, Journal of Financial and Quantitative Analysis 18 (1983), 141-148. https://doi.org/10.2307/2330809
- N. Ju, Pricing an American option by approximating its early exercise boundary as a multi-piece exponential function, Review of Financial Studies 11 (1998), 627-646. https://doi.org/10.1093/rfs/11.3.627
- I. Karatzas, On the pricing of American options, Appl. Math. Optim. 17 (1988), no. 1, 37-60. https://doi.org/10.1007/BF01448358
- I. Karatzas and S. Shreve, Methods of Mathematical Finance, New York, Springer-Verlag, 1998.
- I. Kim, The analytic valuation of American options, Review of Financial Studies 3 (1990), 547-572. https://doi.org/10.1093/rfs/3.4.547
- I. Kim and S. Byun, Optimal exercise boundary in a binomial option pricing model, Journal of Financial Engineering 3 (1994), 137-158.
- I. Kim and B. Jang, An Alternative Numerical Approach for Valuation of American Options: A Simple Iteration Method, Working Paper, 2008.
- R. A. Kuske and J. B. Keller, Optimal exercise boundary for an american put option, Appl. Math. Finance 5 (1998), 107-116. https://doi.org/10.1080/135048698334673
- A. Longstaff and E. Schwartz, Valuing American options by simulation: a simple leastsquares approach, Review of Financial Studies 14 (2001), 113-147. https://doi.org/10.1093/rfs/14.1.113
- R. MacDonald and M. Schroder, A parity result for American options, J. Comput. Finance 1 (1998), 5-13.
- L. MacMillan, An analytical approximation for the Amercian put prices, Advances in Futures and Options Research 1 (1986), 119-139.
- H. McKean, Appendix: a free boundary problem for the heat equation arising from a problem in mathematical economics, Industrial Management Review 6 (1965), 32-39.
- R. Merton, The theory of rational option pricing, Bell Journal of Economics and Management Science 4 (1973), 141-183. https://doi.org/10.2307/3003143
- G. Meyer and J. van der Hoek, The Evaluation of American Options with the Method of Lines, Working Paper, 1994.
- Oosterlee, On multigrid for linear complementary problems with applications to American-style options, Electron. Trans. Numer. Anal. 16 (2003), 165-185.
- D. N. Ostrove and J. Goodman, On the early exercise boundary of the American put option, SIAM J. Appl. Math. 62 (2002), 1823-1835. https://doi.org/10.1137/S0036139900378293
- M. Parkinson, Option pricing: the American put, Journal of Business 50 (1977), 21-36. https://doi.org/10.1086/295902
- S. Peng, Nonlinear expectations, nonlinear evaluations and risk measures, Stochastic methods in finance, 165-253, Lecture Notes in Math., 1856, Springer, Berlin, 2004.
- R. Rendleman and B. Bartter, Two-state option pricing, Journal of Finance 34 (1979), 1093-1110. https://doi.org/10.2307/2327237
- F. Riedel, Optimal stopping with multiple priors, Econometrica 77 (2009), no. 3, 857-908. https://doi.org/10.3982/ECTA7594
- L. Rogers, Monte Carlo valuation of American options, Math. Finance 12 (2002), no. 3, 271-286. https://doi.org/10.1111/1467-9965.02010
- P. Samuelson, Rational theory of warrant pricing, Industrial Management Review 6 (1965), 13-31.
- M. Schroder, Changes of numeraire for pricing futures, forwards and options, Review of Financial Studies 12 (1989), 1143-1163.
- E. Schwartz, The valuation of warrants: implementing a new approach, Journal of Financial Economics 4 (1977), 79-93. https://doi.org/10.1016/0304-405X(77)90037-X
- R. Stamicar, D. Sevcovic, and J. Chadam, The early exercise boundary for the American put near expiry: numerical approximation, Can. Appl. Math. Q. 7 (1999), no. 4, 427-444.
- D. Tavella and C. Randall, Pricing Financial Instruments: The Finite difference Method, John Wiley & Sons, 2000.
- J. Tilley, Valuing American options in a path simulation model, Transactions of the Society of Actuaries 45 (1993), 83-104.
- L. Trigeorgis, Real Options in Capital Investment, Praeger, 1995.
- J. Tsitsiklis and B. Van Roy, Regression analysis for pricing complex American-style options, IEEE Transactions on Neural Networks 12 (2001), 694-703. https://doi.org/10.1109/72.935083
- P. van Moerbeke, On optimal stopping and free boundary problems, Arch. Ration. Mech. Anal. 60 (1975/76), no. 2, 101-148. https://doi.org/10.1007/BF00250676
- P. Wilmott, J. Dewynne, and S. Howison, Option Pricing, Oxford University Press, 1993.
- L.Wu and Y. Kwok, A front-fixing finite difference method for the valuation of American options, Journal of Financial Engineering 6 (1997), 83-97.
- R. Zvan, P. Forsyth, and K. Vetzal, Penalty methods for American options with stochastic volatility, J. Comput. Appl. Math. 91 (1998), no. 2, 199-218. https://doi.org/10.1016/S0377-0427(98)00037-5
- S. Zhu, An exact and explicit solution for the valuation of American put options, Quant. Finance 6 (2006), no. 3, 229-242. https://doi.org/10.1080/14697680600699811
Cited by
- Stochastic approximation methods for American type options vol.45, pp.6, 2016, https://doi.org/10.1080/03610926.2014.915046
- The Randomized American Option as a Classical Solution to the Penalized Problem vol.2015, 2015, https://doi.org/10.1155/2015/245436