References
-
J.-H. Bae and W.-G. Park, On the generalized Hyers-Ulam-Rassias stability in Banach modules over a
$C^\ast$ -algebra, J. Math. Anal. Appl. 294 (2004), no. 1, 196-205. https://doi.org/10.1016/j.jmaa.2004.02.009 -
C. Baak, D.-H. Boo, Th. M. Rassias, Generalized additive mapping in Banach modules and isomorphisms between
$C^\ast$ -algebras, J. Math. Anal. Appl. 314 (2006), no. 1, 150-161. https://doi.org/10.1016/j.jmaa.2005.03.099 - H. Y. Chu and D. S. Kang, On the stability of an n-dimensional cubic functional equation, J. Math. Anal. Appl. 325 (2007), no. 1, 595-607. https://doi.org/10.1016/j.jmaa.2006.02.003
- G.-L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), no. 1-2, 143-190. https://doi.org/10.1007/BF01831117
- G.-L. Forti, Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations, J. Math. Anal. Appl. 295 (2004), no. 1, 127-133. https://doi.org/10.1016/j.jmaa.2004.03.011
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. https://doi.org/10.1006/jmaa.1994.1211
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- R. V. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), no. 2, 249-266. https://doi.org/10.7146/math.scand.a-12116
- R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. I, Elementary theory. Pure and Applied Mathematics, 100. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.
- S.-H. Lee, H. Koh, and S.-H. Ku, Investigation of the stability via shadowing property, J. Inequal. Appl. 2009 (2009), Art. ID 156167, 12 pp.
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. https://doi.org/10.1007/BF02924890
- J. Tabor, Locally expanding mappings and hyperbolicity, Topol. Methods Nonlinear Anal. 30 (2007), no. 2, 335-343.
- J. Tabor and J. Tabor, General stability of functional equations of linear type, J. Math. Anal. Appl. 328 (2007), no. 1, 192-200. https://doi.org/10.1016/j.jmaa.2006.05.022
- S. M. Ulam, Problems in Morden Mathematics, Wiley, New York, 1960.