References
- 강일환(1999). ANFIS 이론을 이용한 상수도 일일 급수량 예측. 석사학위논문, 전남대학교. pp. 22-43.
- 강일환(2005). 뉴로 퍼지와 뉴로 유전자 알고리즘을이용한 상수도 1일 급수량 예측. 박사학위논문, 전남대학교.
- 고영준(2001). 하천의 시유출량 예측을 위한 퍼지신경 회로망의 적용. 석사학위논문, 전남대학교. pp. 1-6, pp. 14-17.
- 남의석(1997). 상수처리시스템의 응집제 주입공정을 위한 지능형 모델링에 관한 연구. 박사학위논문, 연세대학교.
- 문병석, 이경훈, 강일환(2000). 상수도 1일 급수량 예측을 위한 ANFIS 적용. 대한상하수도학회지, 대한상하수도학회, 제14권, 제3호, pp. 45-54.
- 신성일(2002). 신경회로망과 뉴로-퍼지를 이용한 홍수량예측에 관한 연구. 석사학위논문, 경일대학교.
- 심재현(1992). 유수지 배수펌프장의 적정운용을 위한 퍼지제어모형에 관한 연구. 박사학위논문, 연세대학교.
- 안상진, 전계원, 김진극 (2001). 중소하천의 유출수문곡선 예측을 위한 ANFIS의 적용. 건설기술논문집, 제 20권, 제2호, pp. 95-104.
- 이재응, 최창원(2008). Neuro-Fuzzy 추론기법을 이용한 홍수 예․경보. 한국수자원학회논문집, 한국수자원학회, 제41권, 제3호, pp. 341-351. https://doi.org/10.3741/JKWRA.2008.41.3.341
- 이정규, 이창해(1996). 저류함수의 시변성 매개변수 조정에 퍼지이론 도입에 관한 연구. 한국수자원학회논문집, 한국수자원학회, 제29권, 제4호, pp. 149-159.
- 진영훈(2000). 하천의 유출량 예측을 위한 인공 신경망 이론의 적용. 석사학위논문. 전남대학교.
- 황순기(1999). 비선형계 시스템의 수요 예측을 위한 뉴 로 퍼지 모델에 관한 연구. 석사학위논문, 연세대학교.
- Aquil, M., Kita, I., Yano, A., and Nishiyama, S. (2007). A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff. Journal of Hydrology, Vol. 337, No. 1-2, pp. 22-34 https://doi.org/10.1016/j.jhydrol.2007.01.013
- Bae, D.-H., Jung, D.-M., and Kim, G.-S. (2007). Monthly dam inflow forecasting using weather forecasting information and Neuro-Fuzzy technique. Hydrologic Science Journal, Vol. 52, No. 1, pp. 99-113. https://doi.org/10.1623/hysj.52.1.99
- Brown, M., and Harris, C. (1994). Neuro-fuzzy adaptive modeling and control. Prentice Hall, New York.
- Campolo, M., Andreussi, P., and Soldati, A. (1999a). River flood forecasting with a neural network model. Water Resources Research, Vol. 35, pp. 1191-1197. https://doi.org/10.1029/1998WR900086
- Campolo, M., Soldati, A., and Andreussi, P. (1999b). Forecasting river flow rate during low-flow periods using neural networks. Water Resources Research, Vol. 35, pp. 3547-3552. https://doi.org/10.1029/1999WR900205
- Chang, F.J., and Chen, Y.C. (2001). A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. Journal of Hydrology, Vol. 245, pp. 153-164. https://doi.org/10.1016/S0022-1694(01)00350-X
- Chang, F.J., Chang, L.C., and Huang, H.L. (2002). Realtime recurrent learning neural network for streamflow forecasting. Hydrological Process, Vol. 16, pp. 2577-2588. https://doi.org/10.1002/hyp.1015
- Coulibaly, P., Anctil, F., Aravena, and R., Bobee, B. (2001). Artificial neural network modeling of water table depth fluctuations. Water Resources Research, Vol. 37, pp. 885-896. https://doi.org/10.1029/2000WR900368
- Daliakopoulos, I.N., Coulibalya, P., and Tsanis, I.K. (2005). Groundwater level forecasting using artificial neural networks. Journal of Hydrology, Vol. 309, pp. 229-240. https://doi.org/10.1016/j.jhydrol.2004.12.001
- Firat, M., Turan, M.E., and Yurdusev, M.A. (2009). Comparative analysis of fuzzy inference systems for water consumption time series prediction. Journal of Hydrology, Vol. 374, pp. 235-241. https://doi.org/10.1016/j.jhydrol.2009.06.013
- Gautam, D.K., and Holz, K.P. (2001). Rainfall-runoff modeling using adaptive neuro-fuzzy systems, Journal of Hydroinformatics, pp. 3-10.
- Hsu, K., Gupta, H.V., and Sorooshian, S. (1995). Artificial neural network modelling of the rainfall-runoff process. Water Resources Research, Vol. 31, pp. 2517-2530. https://doi.org/10.1029/95WR01955
- Hu, T.S., Lam, K.C., and Ng, S.T. (2001). River flow time series prediction with a range-dependent neural network. Journal of Hydrological Sciences, Vol. 46, pp. 729-745. https://doi.org/10.1080/02626660109492867
- Imrie, C.E., Durucan, S., and Korre, A. (2000). River flow prediction using artificial neural networks: generalisation beyond the calibration range. Journal of Hydrology, Vol. 233, pp. 138-153. https://doi.org/10.1016/S0022-1694(00)00228-6
- Jain, A., Sudheer, K.P., and Srinivasulu, S. (2004). Identification of physical processes inherent in artificial neural network rainfall-runoff models. Hydrologic Process, Vol. 118, pp. 571-581.
- Jang, J.-S. (1992) Self-learning fuzzy controllers based on temporal backpropagation. IEEE Trans Neural Netw, Vol. 3, No. 5, pp. 714-723. https://doi.org/10.1109/72.159060
- Kumar, D.N., Raju, K.S., and Sathish, T. (2004). River flow forecasting using recurrent neural networks. Water Resources Management, Vol. 18, pp. 143-161. https://doi.org/10.1023/B:WARM.0000024727.94701.12
- Kurtulus, B., and Razack, M. (2009). Modeling daily discharge responses of a large karstic aquifer using soft computing methods Artificial neural network and neuro fuzzy. Journal of Hydrology, Vol. 375, pp. 146-162.
- Luk, K.C., Ball, J.E., and Sharma, A. (2001). An application of artificial neural networks for rainfall forecasting. Math Computer Model, Vol. 33, pp. 683-693. https://doi.org/10.1016/S0895-7177(00)00272-7
- Nasr, A., and Bruen, M. (2008). Development of neuro fuzzy models to account for temporal and spatial variations in a lumped rainfall runoff model. Journal of Hydrology, Vol. 349, pp. 277-299. https://doi.org/10.1016/j.jhydrol.2007.10.060
- Nayak, P.C., Sudheer, K.P., Rangan, D.M., and Ramasastri, K.S. (2005). Short-Term Flood Forecasting with a Neurofuzzy Model. Water Resources Research, Vol. 41, No. 4, W04004. https://doi.org/10.1029/2004WR003562
- Ramirez, M.C.P., Velho, H.F.C., and Ferreira, N.J. (2005). Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. Journal of Hydrology, Vol. 301, pp. 146-162. https://doi.org/10.1016/j.jhydrol.2004.06.028
- Shamseldin, A.Y. (1997). Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology, Vol. 199, pp. 272-294. https://doi.org/10.1016/S0022-1694(96)03330-6
- Shu, C., and Ouarda, T.B.M.J. (2008). Regional flood frequency analysis at ungauged sites using the adaptive neuro fuzzy inference system. Journal of Hydrology, Vol. 349, pp. 31-43. https://doi.org/10.1016/j.jhydrol.2007.10.050
- Smith, J., and Eli, R.N. (1995). Neural network models of the rainfall-runoff process. Journal of Water Resources Planning and Management, ASCE, Vol. 121, pp. 499-508. https://doi.org/10.1061/(ASCE)0733-9496(1995)121:6(499)
- Sudheer, K.P., Gosain, A.K., and Ramasastri, K.S. (2002). A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrologic Process, Vol. 16, pp. 1325-1330. https://doi.org/10.1002/hyp.554
- Tokar, A.S., Johnson, P.A. (1999). Rainfall-runoff modelling using artificial neural networks. Journal of Hydraulic Engineering, Vol. 4, pp. 232-239.
- Yarar, M., Onucyildiz, M., and Copty, N.K. (2009). Modelling level change in lakes using neuro fuzzy and artificial neural networks. Journal of Hydrology, Vol. 365, pp. 329-334. https://doi.org/10.1016/j.jhydrol.2008.12.006
- Yurdusev, M.A., and Firat, M. (2009). Adaptive neuro fuzzy inference system approach for municipal water consumption modeling An application to Izmir, Turkey. Journal of Hydrology, Vol. 365, pp. 225-234. https://doi.org/10.1016/j.jhydrol.2008.11.036
- Zealand, C., Burn, D.H., and Simonovic, S.P. (1999). Short-term streamflow forecasting using artificial neural networks. Journal of Hydrology, Vol. 214, pp. 32-48. https://doi.org/10.1016/S0022-1694(98)00242-X
Cited by
- A Methodology for Flood Forecasting and Warning Based on the Characteristic of Observed Water Levels Between Upstream and Downstream vol.13, pp.6, 2013, https://doi.org/10.9798/KOSHAM.2013.13.6.367