References
- Schreiber, S. L. Science 2000, 287, 1964. https://doi.org/10.1126/science.287.5460.1964
- Zhu, J.-P.; Bienayme, H. Multicomponent Reactions; Wiley-VCH: Weinheim,2005; p 1499.
- Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259. https://doi.org/10.1002/anie.199502591
- Tietze, L. F. Chem. Rev. 1996, 96, 115. https://doi.org/10.1021/cr950027e
- Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168. https://doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U
- Domling, A. Chem. Rev. 2006, 106, 17. https://doi.org/10.1021/cr0505728
- Diego, J. R.; Miguel, Y. Angew. Chem., Int. Ed. 2005, 44, 1602. https://doi.org/10.1002/anie.200460548
- Tietze, L. F.; Brasche, G.; Gericke, K. M. Domino Reaction in Organic Synthesis; Wiely-VCH: Weinheim, 2006; p 542.
- James, D. S.; Chris, D.; Stephen, F. M. Org. Lett. 2007, 9, 4223. https://doi.org/10.1021/ol7018357
- Ganem, B. Acc. Chem. Res. 2009, 42, 463. https://doi.org/10.1021/ar800214s
- Barry, B. T.; Dennis, G. H. Chem. Rev. 2009, 109, 4439. https://doi.org/10.1021/cr800296p
- Zhou, H. Y.; Zhang, W.; Yan, B. J. Comb. Chem. 2010, 12, 206. https://doi.org/10.1021/cc900157w
- Liu, A. F.; Zhou, H. Y.; Su, G. X.; Zhang, W.; Yan, B. J. Comb. Chem. 2009, 11, 1083. https://doi.org/10.1021/cc900109e
- Jiang, B.; Tu, S.-J.; Kaur, P.; Wever, W.; Li, G.-G. J. Am. Chem. Soc. 2009, 131, 11660. https://doi.org/10.1021/ja904011s
- Jiang, B.; Wang, X.; Shi, F.; Tu, S.-J.; Ai, T.; Ballew, A.; Li, G. G. J. Org. Chem. 2009, 74, 9486. https://doi.org/10.1021/jo902204s
- Wei, H.-L.; Yan, Z.-Y.; Niu, Y.-L.; Li, G.-Q.; Liang, Y.-M. J. Org. Chem. 2007, 72, 8600. https://doi.org/10.1021/jo7016235
- Cui, S.-L.; Wang, J.; Wang, Y.-G. Org. Lett. 2008, 10, 13. https://doi.org/10.1021/ol7022888
- Cui, S.-L.; Wang, J.; Lin, X.-F.; Wang, Y.-G. J. Org. Chem. 2007, 72, 7779. https://doi.org/10.1021/jo7013593
- Cao, H.; Wang, X.-J.; Jiang, H.-F.; Zhu, Q.-H.; Zhang, M.; Liu, H.-Y. Chem.-Eur. J. 2008, 14, 11623. https://doi.org/10.1002/chem.200801471
- Zhang, M.; Jiang, H.-F.; Liu, H.-L .; Zhu, Q.-H. Org. Lett. 2007, 9, 4111. https://doi.org/10.1021/ol701592h
- Liu, W.-B.; Jiang, H.-F.; Huang, L.-B. Org. Lett. 2010, 12, 312. https://doi.org/10.1021/ol9026478
- Yan, C.-G.; Wang, Q.-F.; Song, X.-K.; Sun, J. J. Org. Chem. 2009, 74, 710. https://doi.org/10.1021/jo802166t
- Wang, Q.-F.; Hou, H.; Hui, L.; Yan, C.-G. J. Org. Chem. 2009, 74, 7403. https://doi.org/10.1021/jo901379h
- Sun, J.; Zhang, L.-L.; Xia, E.-Y.; Yan, C.-G. J. Org. Chem. 2009, 74, 3398. https://doi.org/10.1021/jo900215a
- Douglas, A. H.; Gregory, T. B.; Mark, L. S. Chem. Rev. 2003, 103, 893. https://doi.org/10.1021/cr020033s
- Poupaert, J.; Carato, P.; Colacino, E. Curr. Med. Chem. 2005, 12, 877. https://doi.org/10.2174/0929867053507388
- Triggle, D. J. Cell. Mol. Neurobiol. 2003, 23, 293. https://doi.org/10.1023/A:1023632419813
- Bemis, G. W.; Murcko, M. A. J. Med. Chem. 1996, 39, 2887. https://doi.org/10.1021/jm9602928
- Quintela, J. M.; Veiga, M. C.; Conde, S.; Peinador, C. Monatsh. Chem. 1996, 127, 739. https://doi.org/10.1007/BF00817265
- Numata, T.; Ogura, T.; Hirat, K.; Kudo, M. Jpn Kokai Tokyo KohoJp. 1989, 63, 159, 372 [Chem. Abstr. 1989, 110, 75538].
- Yoshioka, H.; Obato, T.; Fujii, K.; Fukuda, Y.; Ooka, A. Eur. Pat. Appl. Ep. 1989, 283, 271.
- Matolesy, G. World Rev Pest Contr, 1971, 10, 50 [Chem. Abstr. 1972, 76, 820315].
- Okujima, H.; Naeimatsu, A.; Kobayashi, M.; Funlya, R.; Kitada, K. Jpn Kokai Tokyo Jp. 1989, 63, 215, 672 [Chem. Abstr. 1989, 110, 75541].
- Preshin, G. N.; Sherbakova, L. I.; Zykova, T. N.; Sokolova, V. N. Farmakol Tokisikol. 1971, 35, 466 [Chem. Abstr. 1972, 77, 1355802].
- Brown, D. J. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W. Eds.; Pergamon Press: Oxford, 1984; Vol. 3, p 57.
- Wamhoff, H.; Dzenis, J.; Hirota, K. Adv. Heterocycl. Chem. 1992, 55, 129. https://doi.org/10.1016/S0065-2725(08)60222-6
- Hamilton, G. A. in Progress in Bioorganic Chemistry; Kaiser, E. T., Kezdy, F. J., Eds.; Wiley: New York, 1971; Vol. 1, p 83.
- Altomare, C.; Cellamare, S.; Summo, L.; Catto, M.; Carotti, A. J. Med. Chem. 1998, 41, 3812. https://doi.org/10.1021/jm981005y
- Kalgutkar, A. S.; Dalvie, D. K.; Castagnoli, N., Jr.; Taylor, T. J. Chem. Res. Toxicol. 2001, 14, 1139. https://doi.org/10.1021/tx010073b
- Haung, R. H.; Faulkner, R. J. Biol. Chem. 1981, 256, 9211.
- Cohen, G.; Farooqui, R.; Kesler, N. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 4890. https://doi.org/10.1073/pnas.94.10.4890
- Edmondson, D. E.; Mattevi, A.; Binda, C.; Li, M.; Hubalek, F. Curr. Med. Chem. 2004, 19, 1983.
- Youdim, M. B. H.; Finberg, J. P. M. Biochem. Pharmacol. 1991, 41, 155. https://doi.org/10.1016/0006-2952(91)90471-G
- Gottowik, J.; Cesura, A. M.; Malherbe, P.; Lang, G.; Prada, M. D. FEBS Lett. 1993, 317, 152. https://doi.org/10.1016/0014-5793(93)81512-X
- Geha, R. M.; Rebrin, I.; Chen, K.; Shih, J. C. J. Biol. Chem. 2001, 276, 9877. https://doi.org/10.1074/jbc.M006972200
- Westlund, K. N.; Denney, R. M.; Kochersperger, L. M.; Rose, R. M.; Abell, C. W. Science 1985, 230, 181. https://doi.org/10.1126/science.3875898
- Bach, A. W. J.; Lan, N. C.; Johnson, D. L.; Abell, C. W.; Bembenek, M. E.; Kwan, S. W.; Seeburg, P. H.; Shih, J. C. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 4934. https://doi.org/10.1073/pnas.85.13.4934
- Grimsby, J.; Chen, K.; Wang, L. J.; Lan, N. C.; Shin, J. C. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 3637. https://doi.org/10.1073/pnas.88.9.3637
- Rimaz, M.; Khalafy, J. Arkivoc 2010, (ii), 110.
- Rimaz, M.; Khalafy, J.; Najafi Moghadam, P. Aust. J. Chem. 2010, 63, 1396. https://doi.org/10.1071/CH09602
- Rimaz, M.; Khalafy, J.; Noroozi Pesyan, N.; Prager, R. H. Aust. J. Chem. 2010, 63, 507. https://doi.org/10.1071/CH09569
- Rimaz, M.; Noroozi Pesyan, N.; Khalafy, J. Magn. Reson. Chem. 2010, 48, 276. https://doi.org/10.1002/mrc.2573
- Riley, H. A.; Gray, A. R. Organic Syntheses; Wiley & Sons: New York, NY, 1943; Collect. Vol. II, p 509.
- Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals; Pergamon Press: Oxford, U.K., 1988.
Cited by
- ChemInform Abstract: A Regiospecific One-Pot, Three Component Synthesis of 4-Aryl-6,8-dimethylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-diones as New Potential Monoamine Oxidase Inhibitors. vol.42, pp.51, 2011, https://doi.org/10.1002/chin.201151158
- Arylglyoxals in Synthesis of Heterocyclic Compounds vol.113, pp.5, 2013, https://doi.org/10.1021/cr300176g
- ]pyridazine as Potential Human AKT1 Inhibitors vol.53, pp.1, 2016, https://doi.org/10.1002/jhet.2296
- A Novel Synthesis of Fused Uracils: Indenopyrimidopyridazines, Pyrimidopyridazines, and Pyrazolopyrimidines for Antimicrobial and Antitumor Evalution vol.21, pp.12, 2016, https://doi.org/10.3390/molecules21121714
- A Green and Convenient Route for the Regioselective Synthesis of New Substituted 3-Aryl-5H-indeno[1,2-c]pyridazines as Potential Monoamine Oxidase Type A Inhibitors vol.70, pp.6, 2017, https://doi.org/10.1071/CH16364
- An Efficient One-pot Two-component Protocol for Regio- and Chemoselective Synthesis of 5-Aryloyl-1,3,7,9-tetraalkyl-2,8-dithioxo-2,3,8,9-tetrahydro-1H-pyrano[2,3-d:6,5-d′]dipyrimidine-4,6(5H,7H)-diones vol.67, pp.2, 2014, https://doi.org/10.1071/CH13438
- A Green One-Pot Protocol for Regioselective Synthesis of New Substituted 7,8-Dihydrocinnoline-5(6H)-ones vol.33, pp.9, 2011, https://doi.org/10.5012/bkcs.2012.33.9.2890
- An efficient one-pot protocol for regioselective synthesis of 3-aryl-6,8-dialkyl-7-thioxo-7,8-dihydropyrimido[4,5-c] pyridazine-5(6H)-ones vol.34, pp.4, 2013, https://doi.org/10.1080/17415993.2012.745126
- Arylglyoxals as Versatile Synthons for Heterocycles Through Multi-Component Reactions vol.23, pp.18, 2019, https://doi.org/10.2174/1385272823666191019110010