DOI QR코드

DOI QR Code

Expression and Purification of Recombinant Superoxide Dismutase (PaSOD) from Psychromonas arctica in Escherichia coli

  • Na, Ju-Mee (Department of Chemistry, Sejong University) ;
  • Im, Ha-Na (Department of Molecular Biology, Sejong University) ;
  • Lee, Kyung-Hee (Department of Chemistry, Sejong University)
  • Received : 2011.05.23
  • Accepted : 2011.06.02
  • Published : 2011.07.20

Abstract

The psychrophilic bacteria Psychromonas arctica survives at subzero temperatures by having adapted several protective mechanisms against freezing and oxidative stresses. Many reactive oxygen species are likely generated in P. arctica as a result of reduced metabolic turnover rates. A previous study identified the pasod gene for superoxide dismutase from P. arctica using a series of PCR amplifications. Here, upon cloning into a His-tag fused plasmid, the sod gene from P. arctica (pasod) was successfully expressed by IPTG induction. His-tagged PaSOD was subsequently purified by $Ni^{2+}$-NTA affinity chromatography. The purified PaSOD exhibited a higher SOD activity than that of Escherichia coli (EcSOD) at all temperatures. The difference in activity between PaSOD and EcSOD becomes even more significant at 4$^{\circ}C$, indicating that PaSOD plays a functional role in the cold adaptation of P. arctica in the Arctic.

Keywords

References

  1. Gerday, C.; Aittaleb, M.; Arpigny, J.L.; Baise, E.; Chessa, J.P.; Garsoux, G.; Petrescu, I.; Feller, G. Biochim. Biophys. Acta 1997, 1342, 119. https://doi.org/10.1016/S0167-4838(97)00093-9
  2. Feller, G.; Gerday, C. Cell Mol. Life Sci. 1997, 53, 830. https://doi.org/10.1007/s000180050103
  3. Jiang, W.; Hou, Y.; Inouye, M. J. Biol. Chem. 1997, 272, 196. https://doi.org/10.1074/jbc.272.1.196
  4. Jung, Y. H.; Yi, J. Y.; Jung, H. J.; Lee, Y. K.; Lee, H.K.; Naicker, M. C.; Uh, J. H.; Jo, I. S.; Jung, E. J.; Im, H. Protein J. 2010, 29, 136. https://doi.org/10.1007/s10930-010-9233-9
  5. Lee, K.; Choi, H.; Im, H. Curr. Microbiol. 2009, 59, 160. https://doi.org/10.1007/s00284-009-9412-0
  6. Choi, A.; Na, J.; Sung, M.; Im, H.; Lee, K. Bull. Korean Chem. Soc. 2010, 31, 887. https://doi.org/10.5012/bkcs.2010.31.04.887
  7. Coldiron, B. M. J. Am. Acad. Dermatol. 1992, 27, 653. https://doi.org/10.1016/0190-9622(92)70233-6
  8. Selman, C.; McLaren, J. S.; Himanka, M. J.; Speakman, J. R. Free Radic. Biol. 2000, 28, 1279. https://doi.org/10.1016/S0891-5849(00)00263-X
  9. Matés, J. M.; Sanchez-Jimenez, F. Front Biosci 1999, 4, D339. https://doi.org/10.2741/Mates
  10. Bannister, J. V.; Bannister, W. H.; Rotilio, G. CRC Crit. Rev. Biochem. 1987, 22, 111. https://doi.org/10.3109/10409238709083738
  11. Knapp, S.; Kardinahl, S.; Hellgren, N.; Tibbelin, G.; Schafer, G.; Ladenstein, R. J. Mol. Biol. 1999, 285, 689. https://doi.org/10.1006/jmbi.1998.2344
  12. Tainer, J. A.; Getzoff, E. D.; Beem, K. M.; Richardson, J. S.;Richardson, D. C. J. Mol. Biol. 1982, 160, 181. https://doi.org/10.1016/0022-2836(82)90174-7
  13. Barondeau, D. P.; Kassmann, C. J.; Bruns, C. K.; Tainer, J. A.; Getzoff, E. D. Biochemistry 2004, 43, 8038. https://doi.org/10.1021/bi0496081
  14. Yikilmaz, E.; Porta, J.; Grove, L. E.; Vahedi-Faridi, A.; Bronshteyn, Y.; Brunold, T. C.; Borgstahl, G. E.; Miller, A. F. J. Am. Chem. Soc. 2007, 129, 9927. https://doi.org/10.1021/ja069224t
  15. Takeda, Y.; Avila, H. Nucleic. Acid Res. 1986, 14, 4577. https://doi.org/10.1093/nar/14.11.4577
  16. Fournier, M.; Zhang, Y.; Wildschut, J. D.; Dolla, A.; Voordouw, J. K.; Schriemer, D. C.; Voordouw, G. J. Bacteriol. 2003, 185, 71. https://doi.org/10.1128/JB.185.1.71-79.2003
  17. Castellano, I.; Di Maro, A.; Ruocco, M. R.; Chambery, A.; Parente, A.; Di Martino, M. T.; Parlato, G.; Masullo, M.; De Vendittis, E. Biochimie 2006, 88, 1377. https://doi.org/10.1016/j.biochi.2006.04.005
  18. Na, J.; Lee, K. Bull. Korean Chem. Soc. 2010, 31, 2410. https://doi.org/10.5012/bkcs.2010.31.8.2410
  19. Zheng, Z.; Jiang, Y. H.; Miao, J. L.; Wang, Q. F.; Zhang, B. T.; Li, G. Y. Biotechnol Lett. 2006, 28, 85. https://doi.org/10.1007/s10529-005-4951-3
  20. Pedersen, H. L.; Willassen, N. P.; Leiros, I. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2009, 65, 84. https://doi.org/10.1107/S1744309109001110
  21. Bradford, M. M. Anal. Biochem. 1976, 72, 248. https://doi.org/10.1016/0003-2697(76)90527-3
  22. Beauchamp, C.; Fridovich, I. Anal. Biochem. 1971, 44, 276. https://doi.org/10.1016/0003-2697(71)90370-8
  23. Sonnhammer, E. L.; Eddy, S. R.; Durbin, R. Proteins 1997, 28, 405. https://doi.org/10.1002/(SICI)1097-0134(199707)28:3<405::AID-PROT10>3.0.CO;2-L
  24. Thompson, J. D.; Higgins, D. G.; Gibson, T. J. Nucleic. Acids Res. 1994, 22, 4673. https://doi.org/10.1093/nar/22.22.4673
  25. Gud, F. X.; Shi-Jin, E.; Liu, S. A.; Chen, J.; Li, D. C. Mycoloqia 2008, 100, 375. https://doi.org/10.3852/06-111R

Cited by

  1. Detection, Distribution and Characterization of Novel Superoxide Dismutases from Yersinia enterocolitica Biovar 1A vol.8, pp.5, 2013, https://doi.org/10.1371/journal.pone.0063919
  2. sp. ANT506 vol.56, pp.7, 2015, https://doi.org/10.1002/jobm.201500444
  3. Enzymes from Marine Polar Regions and Their Biotechnological Applications vol.17, pp.10, 2011, https://doi.org/10.3390/md17100544