DOI QR코드

DOI QR Code

Theoretical Studies on Electronic Structure and Absorption Spectrum of Prototypical Technetium-Diphosphonate Complex 99mTc-MDP

  • Qiu, Ling (Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine) ;
  • Lin, Jian-Guo (Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine) ;
  • Gong, Xue-Dong (Institute for Computation in Molecular and Material Science, School of Chemical Engineering, Nanjing University of Science and Technology) ;
  • Ju, Xue-Hai (Institute for Computation in Molecular and Material Science, School of Chemical Engineering, Nanjing University of Science and Technology) ;
  • Luo, Shi-Neng (Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine)
  • Received : 2011.02.02
  • Accepted : 2011.05.30
  • Published : 2011.07.20

Abstract

Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations, employing the B3LYP method and the LANL2DZ, 6-31G$^*$(LANL2DZ for Tc), 6-31G$^*$(cc-pVDZ-pp for Tc) and DGDZVP basis sets, have been performed to investigate the electronic structures and absorption spectra of the technetium-99m-labeled methylenediphosphonate ($^{99m}Tc$-MDP) complex of the simplest diphosphonate ligand. The bonding situations and natural bond orbital compositions were studied by the Mulliken population analysis (MPA) and natural bond orbital (NBO) analysis. The results indicate that the ${\sigma}$ and ${\pi}$ contributions to the Tc-O bonds are strongly polarized towards the oxygen atoms and the ionic contribution to the Tc-O bonding is larger than the covalent contribution. The electronic transitions investigated by TDDFT calculations and molecular orbital analyses show that the origin of all absorption bands is ascribed to the ligand-to-metal charge transfer (LMCT) character. The solvent effect on the electronic structures and absorption spectra has also been studied by performing DFT and TDDFT calculations at the B3LYP/6-31G$^*$(cc-pVDZ-pp for Tc) level with the integral equation formalism polarized continuum model (IEFPCM) in different media. It is found that the absorption spectra display blue shift in different extents with the increase of solvent polarity.

Keywords

References

  1. Desmet, G., Myttenaere, C., Eds.; In Technetium in the Environment; Kluwer Academic Press: Dordrecht, 1986; p 420.
  2. Rard, J. A., Rand, M. N., Anderegg, G., Wanner, H., Eds.; In Chemical Thermodynamics 3. Chemical Thermodynamics of Technetium; Elsevier Science: Lausanne, 1999; p 568.
  3. Alberto, R. In Technetium. Comprehensive Coordination Chemistry- II; Cleverty, J. M., Meer, T. S., Eds.; Elsevier Science: Amsterdam, 2003; Vol. 4.
  4. Dilworth, J. R.; Parrott, S. J. Chem. Soc. Rev. 1998, 27, 43. https://doi.org/10.1039/a827043z
  5. Kodina, G. E. In Isotopes. Properties, Obtaining, Applications; Baranov, V. Y., Ed.; Atomnaya Energiya: Moscow, 2000.
  6. Mendez-Rojas, M. A.; Kharisov, B. I.; Tsivadze, A. Y. J. Coord. Chem. 2006, 59, 1. https://doi.org/10.1080/00958970500324633
  7. Jurisson, S. S.; Lydon, J. D. Chem. Rev. 1999, 99, 2205. https://doi.org/10.1021/cr980435t
  8. Pauwels, E. K.; Stokkel, M. P. Q. J. Nucl. Med. 2001, 45, 18.
  9. Mark, D.; Bartholom, A.; Louie, S.; John, F. V.; Jon, Z. Chem. Rev. 2010, 110, 2903. https://doi.org/10.1021/cr1000755
  10. Subramanian, G.; McAfee, J. G.; Blair, R. J.; Kallfelz, F. A.; Thomas, F. D. J. Nucl. Med. 1975, 16, 744.
  11. Bevan, J. A.; Tofe, A. J.; Benedict, J. J.; Francis, M. D.; Barnett, B. L. J. Nucl. Med. 1980, 21, 961.
  12. Laznicek, M.; Laznickova, A.; Budsky, F. Nucl. Med. Commun. 1996, 17, 1016. https://doi.org/10.1097/00006231-199612000-00003
  13. Fueger, B. J.; Mitterhauser, M.; Wadsak, W.; Ofluoglu, S.; Traub, T.; Karanikas, G.; Dudczak, R.; Pirich, C. Nucl. Med. Commun. 2004, 25, 361. https://doi.org/10.1097/00006231-200404000-00008
  14. El-Mabhouh, A. A.; Angelov, C. A.; Cavell, R.; Mercer, J. R. Nucl. Med. Biol. 2006, 33, 715. https://doi.org/10.1016/j.nucmedbio.2006.06.004
  15. Palma, E.; Oliveira, B. L.; Correia, J. D.; Gano, L.; Maria, L.; Santos, I. C.;Santos, I. J. Biol. Inorg. Chem. 2007, 12, 667. https://doi.org/10.1007/s00775-007-0215-0
  16. Asikoglu, M.; Durak, F. G. Appl. Radiat. Isotopes. 2009, 67, 1616. https://doi.org/10.1016/j.apradiso.2009.04.009
  17. Guo, X. H.; Luo, S. N.; Wang, H. Y.; Zhou, L.; Xie, M. H.; Ye, W. Z.; Yang, M.; Wang, Y. Nucl. Sci. Tech. 2006, 17, 285. https://doi.org/10.1016/S1001-8042(06)60053-5
  18. Yan, X. H.; Luo, S. N.; Niu, G. S.; Ye, W. Z.; Yang, M.; Wang, H. Y.; Xia,Y. M. Nucl. Sci. Tech. 2008, 19, 165. https://doi.org/10.1016/S1001-8042(08)60044-5
  19. Chen, C. Q.; Luo, S. N.; Lin, J. G.; Yang, M.; Ye, W. Z.; Qiu, L.; Sang, G. M.; Xia, Y. M. Nucl. Sci.Tech. 2009, 20, 302.
  20. Lin, J. G.; Luo, S. N.; Chen, C. Q.; Qiu, L.; Wang, Y.; Cheng, W.; Ye, W. Z.; Xia, Y. M. Appl. Radiat. Isotopes 2010, 68, 1616. https://doi.org/10.1016/j.apradiso.2010.03.009
  21. Libson, K.; Deutsch, E.; Barnett, B. L. J. Am. Chem. Soc. 1980, 102, 2476. https://doi.org/10.1021/ja00527a066
  22. Martin, J. L., Jr.; Yuan, J.; Lunte, C. E.; Elder, R. C.; Heineman, W. R.; Deutsch, E. Inorg. Chem. 1989, 28, 2899. https://doi.org/10.1021/ic00314a001
  23. Elder, R. C.; Yuan, J.; Helmer, B.; Pipes, D.; Deutsch, K.; Deutsch, E. Inorg. Chem. 1997, 36, 3055. https://doi.org/10.1021/ic960980h
  24. Qiu, L.; Lin, J. G.; Ju, X. H.; Gong, X. D.; Luo, S. N. Chin. J. Chem. Phys. 2011, in press.
  25. Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory; Wiley-VCH: Weinheim, Germany, 2000.
  26. Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218. https://doi.org/10.1063/1.477483
  27. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  28. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  29. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. https://doi.org/10.1063/1.448975
  30. Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213. https://doi.org/10.1007/BF00533485
  31. Peterson, K. A.; Figgen, D.; Dolg, M.; Stoll, H. J. Chem. Phys. 2007, 126, 124101. https://doi.org/10.1063/1.2647019
  32. Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J. Chem. 1992, 70, 560. https://doi.org/10.1139/v92-079
  33. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. https://doi.org/10.1063/1.1740588
  34. Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211. https://doi.org/10.1021/ja00544a007
  35. GaussView, release 3.0; Gaussian Inc.: Pittsburgh, PA, 2003.
  36. Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. https://doi.org/10.1021/cr9904009
  37. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02. Wallingford CT: Gaussian, Inc., 2004.
  38. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. https://doi.org/10.1063/1.449486
  39. Schaffer, C. E. Inorg. Chim. Acta 2000, 300-302, 1035. https://doi.org/10.1016/S0020-1693(99)00599-X
  40. Pauling, L. C. In The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; p 172.
  41. Uchtman, V. A,; Gloss, R. A. J. Phys. Chem. 1972, 76, 1298. https://doi.org/10.1021/j100653a013
  42. Rasanen, J. P.; Pohjala, E.; Nikander, H.; Pakkanen, T. A. J. Phys. Chem. A 1997, 101, 5196. https://doi.org/10.1021/jp971213m
  43. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. https://doi.org/10.1021/cr00088a005
  44. Wiberg, K. A. Tetrahedron 1968, 24, 1083. https://doi.org/10.1016/0040-4020(68)88057-3
  45. Neuhaus, A.; Veldkamp, A.; Frenking, G. Inorg. Chem. 1994, 33, 5278. https://doi.org/10.1021/ic00101a020
  46. Machura, B.; Jaworska, M.; Lodowski, P. J. Mol. Struc.-Theochem. 2006, 766, 1. https://doi.org/10.1016/j.theochem.2005.06.037
  47. Gancheff, J. S.; Albuquerque, R. Q.; Guerrero-Martínez, A.; Pape, T.; De Cola, L.; Hahn, F. E. Eur. J. Inorg. Chem. 2009, 4043.
  48. Soloman, E. I., Lever, A. B. P., Eds.; Inorganic and Electronic Spectroscopy, Volume II, Applications and Case Studies; Wiley and Sons Inc.: New York, 1999.
  49. Zhang, T. T.; Jia, J. F.; Wu, H. S. J. Phys. Chem. A 2010, 114, 12251. https://doi.org/10.1021/jp104458u
  50. Fraser, M. G.; Blackman, A. G.; Irwin, G. I. S.; Easton, C. P.; Gordon, K. C. Inorg. Chem. 2010, 49, 5180. https://doi.org/10.1021/ic1003116
  51. Yoshihide, N.; Ken, S.; Shigeyoshi, S. Int. J. Quantum Chem. 2009, 109, 2319. https://doi.org/10.1002/qua.22172
  52. Machura, B.; Kusz, J.; Tabak, D.; Kruszynski, R. Polyhedron. 2009, 28, 493. https://doi.org/10.1016/j.poly.2008.11.053
  53. Liu, C. G.; Su, Z. M.; Guan, W.; Yan, L. K. Inorg. Chem. 2009, 48, 541. https://doi.org/10.1021/ic8012443
  54. Rodriuez, L.; Ferrer, M.; Rossell, O.; Duarte, F. J. S.; Santos, A. G.; Lima, J. C. J. Photochem. Photobiol. A: Chem. 2009, 204, 174. https://doi.org/10.1016/j.jphotochem.2009.03.022
  55. Kamlet, M. J.; Taft, R. W. J. Am. Chem. Soc. 1976, 98, 377. https://doi.org/10.1021/ja00418a009

Cited by

  1. Theoretical analysis of TcO3(OH), TcS3(OH) and TcSe3(OH) vol.310, pp.3, 2016, https://doi.org/10.1007/s10967-016-4971-6
  2. Substituent Effect on the Structure and Biological Property of 99mTc-Labeled Diphosphonates: Theoretical Studies vol.33, pp.12, 2011, https://doi.org/10.5012/bkcs.2012.33.12.4084