References
- Desmet, G., Myttenaere, C., Eds.; In Technetium in the Environment; Kluwer Academic Press: Dordrecht, 1986; p 420.
- Rard, J. A., Rand, M. N., Anderegg, G., Wanner, H., Eds.; In Chemical Thermodynamics 3. Chemical Thermodynamics of Technetium; Elsevier Science: Lausanne, 1999; p 568.
- Alberto, R. In Technetium. Comprehensive Coordination Chemistry- II; Cleverty, J. M., Meer, T. S., Eds.; Elsevier Science: Amsterdam, 2003; Vol. 4.
- Dilworth, J. R.; Parrott, S. J. Chem. Soc. Rev. 1998, 27, 43. https://doi.org/10.1039/a827043z
- Kodina, G. E. In Isotopes. Properties, Obtaining, Applications; Baranov, V. Y., Ed.; Atomnaya Energiya: Moscow, 2000.
- Mendez-Rojas, M. A.; Kharisov, B. I.; Tsivadze, A. Y. J. Coord. Chem. 2006, 59, 1. https://doi.org/10.1080/00958970500324633
- Jurisson, S. S.; Lydon, J. D. Chem. Rev. 1999, 99, 2205. https://doi.org/10.1021/cr980435t
- Pauwels, E. K.; Stokkel, M. P. Q. J. Nucl. Med. 2001, 45, 18.
- Mark, D.; Bartholom, A.; Louie, S.; John, F. V.; Jon, Z. Chem. Rev. 2010, 110, 2903. https://doi.org/10.1021/cr1000755
- Subramanian, G.; McAfee, J. G.; Blair, R. J.; Kallfelz, F. A.; Thomas, F. D. J. Nucl. Med. 1975, 16, 744.
- Bevan, J. A.; Tofe, A. J.; Benedict, J. J.; Francis, M. D.; Barnett, B. L. J. Nucl. Med. 1980, 21, 961.
- Laznicek, M.; Laznickova, A.; Budsky, F. Nucl. Med. Commun. 1996, 17, 1016. https://doi.org/10.1097/00006231-199612000-00003
- Fueger, B. J.; Mitterhauser, M.; Wadsak, W.; Ofluoglu, S.; Traub, T.; Karanikas, G.; Dudczak, R.; Pirich, C. Nucl. Med. Commun. 2004, 25, 361. https://doi.org/10.1097/00006231-200404000-00008
- El-Mabhouh, A. A.; Angelov, C. A.; Cavell, R.; Mercer, J. R. Nucl. Med. Biol. 2006, 33, 715. https://doi.org/10.1016/j.nucmedbio.2006.06.004
- Palma, E.; Oliveira, B. L.; Correia, J. D.; Gano, L.; Maria, L.; Santos, I. C.;Santos, I. J. Biol. Inorg. Chem. 2007, 12, 667. https://doi.org/10.1007/s00775-007-0215-0
- Asikoglu, M.; Durak, F. G. Appl. Radiat. Isotopes. 2009, 67, 1616. https://doi.org/10.1016/j.apradiso.2009.04.009
- Guo, X. H.; Luo, S. N.; Wang, H. Y.; Zhou, L.; Xie, M. H.; Ye, W. Z.; Yang, M.; Wang, Y. Nucl. Sci. Tech. 2006, 17, 285. https://doi.org/10.1016/S1001-8042(06)60053-5
- Yan, X. H.; Luo, S. N.; Niu, G. S.; Ye, W. Z.; Yang, M.; Wang, H. Y.; Xia,Y. M. Nucl. Sci. Tech. 2008, 19, 165. https://doi.org/10.1016/S1001-8042(08)60044-5
- Chen, C. Q.; Luo, S. N.; Lin, J. G.; Yang, M.; Ye, W. Z.; Qiu, L.; Sang, G. M.; Xia, Y. M. Nucl. Sci.Tech. 2009, 20, 302.
- Lin, J. G.; Luo, S. N.; Chen, C. Q.; Qiu, L.; Wang, Y.; Cheng, W.; Ye, W. Z.; Xia, Y. M. Appl. Radiat. Isotopes 2010, 68, 1616. https://doi.org/10.1016/j.apradiso.2010.03.009
- Libson, K.; Deutsch, E.; Barnett, B. L. J. Am. Chem. Soc. 1980, 102, 2476. https://doi.org/10.1021/ja00527a066
- Martin, J. L., Jr.; Yuan, J.; Lunte, C. E.; Elder, R. C.; Heineman, W. R.; Deutsch, E. Inorg. Chem. 1989, 28, 2899. https://doi.org/10.1021/ic00314a001
- Elder, R. C.; Yuan, J.; Helmer, B.; Pipes, D.; Deutsch, K.; Deutsch, E. Inorg. Chem. 1997, 36, 3055. https://doi.org/10.1021/ic960980h
- Qiu, L.; Lin, J. G.; Ju, X. H.; Gong, X. D.; Luo, S. N. Chin. J. Chem. Phys. 2011, in press.
- Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory; Wiley-VCH: Weinheim, Germany, 2000.
- Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218. https://doi.org/10.1063/1.477483
- Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
- Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
- Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. https://doi.org/10.1063/1.448975
- Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213. https://doi.org/10.1007/BF00533485
- Peterson, K. A.; Figgen, D.; Dolg, M.; Stoll, H. J. Chem. Phys. 2007, 126, 124101. https://doi.org/10.1063/1.2647019
- Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J. Chem. 1992, 70, 560. https://doi.org/10.1139/v92-079
- Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. https://doi.org/10.1063/1.1740588
- Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211. https://doi.org/10.1021/ja00544a007
- GaussView, release 3.0; Gaussian Inc.: Pittsburgh, PA, 2003.
- Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. https://doi.org/10.1021/cr9904009
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02. Wallingford CT: Gaussian, Inc., 2004.
- Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. https://doi.org/10.1063/1.449486
- Schaffer, C. E. Inorg. Chim. Acta 2000, 300-302, 1035. https://doi.org/10.1016/S0020-1693(99)00599-X
- Pauling, L. C. In The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; p 172.
- Uchtman, V. A,; Gloss, R. A. J. Phys. Chem. 1972, 76, 1298. https://doi.org/10.1021/j100653a013
- Rasanen, J. P.; Pohjala, E.; Nikander, H.; Pakkanen, T. A. J. Phys. Chem. A 1997, 101, 5196. https://doi.org/10.1021/jp971213m
- Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899. https://doi.org/10.1021/cr00088a005
- Wiberg, K. A. Tetrahedron 1968, 24, 1083. https://doi.org/10.1016/0040-4020(68)88057-3
- Neuhaus, A.; Veldkamp, A.; Frenking, G. Inorg. Chem. 1994, 33, 5278. https://doi.org/10.1021/ic00101a020
- Machura, B.; Jaworska, M.; Lodowski, P. J. Mol. Struc.-Theochem. 2006, 766, 1. https://doi.org/10.1016/j.theochem.2005.06.037
- Gancheff, J. S.; Albuquerque, R. Q.; Guerrero-Martínez, A.; Pape, T.; De Cola, L.; Hahn, F. E. Eur. J. Inorg. Chem. 2009, 4043.
- Soloman, E. I., Lever, A. B. P., Eds.; Inorganic and Electronic Spectroscopy, Volume II, Applications and Case Studies; Wiley and Sons Inc.: New York, 1999.
- Zhang, T. T.; Jia, J. F.; Wu, H. S. J. Phys. Chem. A 2010, 114, 12251. https://doi.org/10.1021/jp104458u
- Fraser, M. G.; Blackman, A. G.; Irwin, G. I. S.; Easton, C. P.; Gordon, K. C. Inorg. Chem. 2010, 49, 5180. https://doi.org/10.1021/ic1003116
- Yoshihide, N.; Ken, S.; Shigeyoshi, S. Int. J. Quantum Chem. 2009, 109, 2319. https://doi.org/10.1002/qua.22172
- Machura, B.; Kusz, J.; Tabak, D.; Kruszynski, R. Polyhedron. 2009, 28, 493. https://doi.org/10.1016/j.poly.2008.11.053
- Liu, C. G.; Su, Z. M.; Guan, W.; Yan, L. K. Inorg. Chem. 2009, 48, 541. https://doi.org/10.1021/ic8012443
- Rodriuez, L.; Ferrer, M.; Rossell, O.; Duarte, F. J. S.; Santos, A. G.; Lima, J. C. J. Photochem. Photobiol. A: Chem. 2009, 204, 174. https://doi.org/10.1016/j.jphotochem.2009.03.022
- Kamlet, M. J.; Taft, R. W. J. Am. Chem. Soc. 1976, 98, 377. https://doi.org/10.1021/ja00418a009
Cited by
- Theoretical analysis of TcO3(OH), TcS3(OH) and TcSe3(OH) vol.310, pp.3, 2016, https://doi.org/10.1007/s10967-016-4971-6
- Substituent Effect on the Structure and Biological Property of 99mTc-Labeled Diphosphonates: Theoretical Studies vol.33, pp.12, 2011, https://doi.org/10.5012/bkcs.2012.33.12.4084