DOI QR코드

DOI QR Code

Synthesis and Structural Studies of an Organic Complex and its Association with BSA

  • Meng, Fa-Yan (College of Chemistry and Chemical Engineering, Guangxi University) ;
  • Yu, Sheng-Rong (College of Chemistry and Chemical Engineering, Guangxi University) ;
  • Liang, Li-Xi (College of Chemistry and Chemical Engineering, Guangxi University) ;
  • Zhong, Xue-Ping (College of Chemistry and Chemical Engineering, Guangxi University) ;
  • Wang, Li (College of Chemistry and Chemical Engineering, Guangxi University) ;
  • Zhu, Jin-Mei (College of Chemistry and Chemical Engineering, Guangxi University) ;
  • Lin, Cui-Wu (College of Chemistry and Chemical Engineering, Guangxi University)
  • Received : 2011.05.06
  • Accepted : 2011.05.19
  • Published : 2011.07.20

Abstract

The self-assembly of one novel organic complex based on chlorogenic acid (HCA) and 2,2'-bipyridine (2,2'-bipy) has been synthesized and characterized. The complex achieved by hydrogen-bonding interactions, adopted a 1:1 stoichiometry in a solid state. The proton transfer occurred from the carboxyl oxygen to the aromatic nitrogen atom to form salts CA${\cdot}$(2,2'-Hbipy), the 2,2'-Hbipy molecule individually occupies the pseudo-tetragonum that is formed with CA. In this paper, the interactions of CA${\cdot}$(2,2'-Hbipy) with bovine serum albumin (BSA) were studied by fluorescence spectrometry. For CA${\cdot}$(2,2'-Hbipy), HCA and 2,2'-bipy, the average quenching constants for BSA were $2.4384{\times}10^4$, $4.653{\times}10^3$, and $3.059{\times}10^3\;L{\cdot}mol^{-1}$, respectively. The mechanism for protein fluorescence quenching is apparently governed by a static quenching process. The Stern-Volmer quenching constants and corresponding thermodynamic parameters ${\Delta}$H, ${\Delta}$G and ${\Delta}$S were calculated. The binding constants and the number of binding sites were also investigated. The conformational changes of BSA were observed from synchronous fluorescence spectra.

Keywords

References

  1. Chen, J.; Sarma, B.; Evans J. M. B.; Myerson A. S. Cryst. Growth Des. 2011, in press.
  2. Sreekanth, B. R.; Vishweshwar, P.; Vyas, K.; Chem. Commun 2007, 2375.
  3. Ling, A. R.; Baker, J. L. J. Chem. Soc., Trans. 1893, 63, 1314. https://doi.org/10.1039/ct8936301314
  4. Basavoju, S.; Boström, D.; Velaga, S. P. Pharm. Res. 2008, 25, 530. https://doi.org/10.1007/s11095-007-9394-1
  5. Padrela, L.; Rodrigues, M. A.; Velaga, S. P.; Matosa, H. A.; Azevedo, E. G. Eur. J. Pharm. Sci. 2009, 38, 9. https://doi.org/10.1016/j.ejps.2009.05.010
  6. Shan, N.; Zaworotko, M. J. Drug Discov. Today 2008, 13, 440. https://doi.org/10.1016/j.drudis.2008.03.004
  7. Vishweshwar, P.; McMahon, J. A.; Bis J. A.; Zaworotko, M. J. J. Pharm. Sci. 2005, 95, 499.
  8. Childs, S. L.; Chyall, L. J.; Dunlap, J. T.; Smolenskaya, V. N.; Stahly, B. C.; Stahly, G. P. J. Am.Chem. Soc. 2004, 126, 13335. https://doi.org/10.1021/ja048114o
  9. Childs, S. L.; Hardcastle, K. I. Cryst. Growth Des. 2009, 7, 1291.
  10. Ravindrana, A.; Singha, A.; Raichurb, A. M.; Chandrasekaran, N; Jee, A. M. Colloid Surface B 2010, 76, 32. https://doi.org/10.1016/j.colsurfb.2009.10.005
  11. Moreno, F.; Cortijo, M.; Jimenez, J. G. Photochem. Photobiol. 1999, 70, 695. https://doi.org/10.1111/j.1751-1097.1999.tb08272.x
  12. Machicote, R. G.; Pacheco, M. E.; Bruzzone, L. Spectrochim. Acta A 2010, 77, 466. https://doi.org/10.1016/j.saa.2010.06.020
  13. Kang, J.; Liu, Y.; Xie, M.-X.; Li, S.; Jiang, M.; Wang, Y.-D. Biochim. Biophys. Acta 2004, 1674, 205. https://doi.org/10.1016/j.bbagen.2004.06.021
  14. Sklar, L. A.; Hudson, B. S.; Simoni, R. D. Biochemistry 1977, 16, 5100. https://doi.org/10.1021/bi00642a024
  15. Joseph, K. S.; Hage, D. S. J. Chromatogr. B 2010, 878, 1590. https://doi.org/10.1016/j.jchromb.2010.04.019
  16. Wang, B.-S.; Fan, J.-L.; Sun, S.-G.; Wang, L.; Song, B.; Peng, X.-J. Dyes and Pigments 2010, 85, 43. https://doi.org/10.1016/j.dyepig.2009.10.002
  17. Cao, S.-H.; Jiang, X.-Y.; Chen, J.-W. J. Inorg. Biochem. 2010, 104, 146. https://doi.org/10.1016/j.jinorgbio.2009.10.014
  18. Cho, C.-H.; Peng C.-C.; Chen, J.-H.; Wang, S.-S.; Tung, J.-Y. Polyhedron 2010, 29, 1116. https://doi.org/10.1016/j.poly.2009.12.019
  19. Wang, H.-J.; Wang, K.; Yang, L.; An, Y.-G.; Cao, Y. Mater. Lett. 2010, 64, 181. https://doi.org/10.1016/j.matlet.2009.10.041
  20. Zhao, J.-Y.; Ren, F.-L. Spectrochim. Acta A 2009, 72, 682. https://doi.org/10.1016/j.saa.2008.10.058
  21. Chen, X.-T.; Xiang,Y.; Tong, A. J. Talanta 2010, 80, 1952. https://doi.org/10.1016/j.talanta.2009.10.053
  22. Joseph, K. S.; Hage, D. S. J. Chromatogr. B 2010, 878, 1590. https://doi.org/10.1016/j.jchromb.2010.04.019
  23. Xu, H.; Gao, S.-L.; Lv, J.-B.; Liu, Q.-W.; Zuo, Y.; Wang, X. J. Mol. Struct. 2009, 919, 334. https://doi.org/10.1016/j.molstruc.2008.09.028
  24. Katrahalli, U.; Jaldappagari, S.; Kalanur, S. S. Spectrochim. Acta A 2010, 75, 314. https://doi.org/10.1016/j.saa.2009.10.031
  25. Cokugras, A. N.; Bodur, E. Pestic. Biochem. Physiol. 2003, 77, 24.
  26. Stephanie,V. E. P.; Harry, G.; Antonie, J. W. G. V.; Koningsveld, G. A. V.; Jong, G. A. H. D.; Voragen, A. G. J. J. Agric. Food Chem. 2003, 51, 5088. https://doi.org/10.1021/jf021229w
  27. Harshadrai, M. R.; Sascha, R.; Peter, K. H.; Jurgen, K. Food Chem. 2002, 78, 443. https://doi.org/10.1016/S0308-8146(02)00155-3
  28. Martin, R.; Lilley, T. H.; Falshaw, C. P.; Haslam, E.; Begley, M. J.; Magnolato, D. Phytochemistry 1987, 26, 273.
  29. Martin, R.; Lilley, T. H.; Bailey, N. A.; Falshaw, C. P.; Haslam, E.; Magnolato, D.; Begleyc, M. J. J. Chem. Soc. Chem. Commun. 1986, 105.
  30. Huang, L.; Lei, T.; Lin, C.-W.; Kuang, X.-C.; Chen, H.-Y.; Zhou, H. Fitoterapia 2010, 81, 389. https://doi.org/10.1016/j.fitote.2009.11.009
  31. Sheldrick, G. M. SADABS. 1996 (Program for Empirical Absorption Correction of Area Detector, University of Gottingen, Germany).
  32. Sheldrick G. M. SHELXTL V5.1 Software Reference Manual, Bruker AXS, Inc., Madison, Wisconsin, USA. 1997.
  33. Papadopoulou, A.; Green, R. J.; Frazier, R. A. J. Agric. Food Chem. 2005, 53, 158. https://doi.org/10.1021/jf048693g
  34. Etzkorn, C.; Horton, N. C. Biochemistry 2004, 43, 13256. https://doi.org/10.1021/bi0490082
  35. Pinto, E. M.; Soares, D. M.; Brett, C. M. A. Electrochim. Acta 2008, 53, 7460. https://doi.org/10.1016/j.electacta.2008.01.096
  36. Sucharita, D.; Arumay, P.; Chakrabarti, Janin, P. J. J. Mol. Biol. 2010, 398, 146. https://doi.org/10.1016/j.jmb.2010.02.020
  37. Cao, S.-H.; Jiang, X.-Y.; Chen, J.-W. J. Inorg. Biochem. 2010, 104, 146. https://doi.org/10.1016/j.jinorgbio.2009.10.014
  38. Ding, F.; Liu, W.; Liu, F.; Li, Z.-Y.; Sun, Y. J. Fluoresc. 2009, 19, 783. https://doi.org/10.1007/s10895-009-0475-x
  39. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006.
  40. Lakowicz, J. R.; Weber, G. Biochemistry 1973, 12, 4161. https://doi.org/10.1021/bi00745a020
  41. Hu, Y.-J.; Liu, Y.-L.; Zhang, X.; Zhao, R.-M.; Qu, S.-S. J. Mol. Struct. 2005, 750, 174. https://doi.org/10.1016/j.molstruc.2005.04.032
  42. Liu, Y.-M.; Li, G.-Z.; Sun, X.-F. Chin. J. Anal. Chem. 2004, 32, 615.
  43. Xu, H.; Gao, S.-L.; Lv, J.-B.; Liu, Q.-W.; Zuo, Y.; Wang, X. J. Mol. Struct. 2009, 919, 334. https://doi.org/10.1016/j.molstruc.2008.09.028
  44. Ge, F.; Chen, C.-Y.; Liu, D.-Q.; Han, B.-Y.; Xiong, X.-F.; Zhao, S.-L. J. Lumin. 2010, 130, 168. https://doi.org/10.1016/j.jlumin.2009.08.003
  45. Anbazhagan, V.; Renganathan, R. J. Lumin. 2008, 128, 1454. https://doi.org/10.1016/j.jlumin.2008.02.004
  46. Han, X.-L.; Mei, P.; Liu, Y.; Xiao, Q.; Jiang, F.-L.; Li, R. Spectrochim. Acta A 2009, 74, 781. https://doi.org/10.1016/j.saa.2009.08.018
  47. Leckband, D. A. Annu. Rev. Biophys. Bio. Mol. Struct. 2000, 29, 1. https://doi.org/10.1146/annurev.biophys.29.1.1
  48. Ross, P. D.; Subramanian, S. Biochemistry 1981, 20, 3096. https://doi.org/10.1021/bi00514a017
  49. Timasheff, S. N. Thermodynamic of Protein Interactions; Peeters, H., Ed.; In Proteins of Biological Fluids; Pergamon Press: Oxford, 1972.
  50. Ding, F.; Liu, W.; Liu, F.; Li, Z.-Y.; Sun, Y. J. Fluoresc. 2009, 19, 783. https://doi.org/10.1007/s10895-009-0475-x
  51. Congdon, R. W.; Muth, G. W.; Splittgerber, A. G. Anal. Biochem. 1993, 213, 407. https://doi.org/10.1006/abio.1993.1439
  52. Wang, T.-H.; Zhao, Z.-M.; Wei, B.-Z.; Zhang, L.; Ji, L. J. Mol. Struct. 2010, 970, 128. https://doi.org/10.1016/j.molstruc.2010.02.061
  53. Hu, Y.-J.; Liu, Y.; Zhao, R.-M.; Dong, J.-X.; Qu, S.-S. J. Photochem. Photobiol. A Chem. 2006, 179, 324. https://doi.org/10.1016/j.jphotochem.2005.08.037

Cited by

  1. Development of Peptide Conjugated Chlorogenic Acid Nanoassemblies for Targeting Tumorigenic Cells vol.13, pp.3, 2015, https://doi.org/10.1080/1539445X.2015.1045076