References
- Azad, N.; Rojanasakul, Y.; Vallyathan, V. Journal of Toxicology and Environmental Health-Part B-Critical Reviews 2008, 11(1), 1. https://doi.org/10.1080/10937400701436460
- Miller, E. W.; Albers, A. E.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. Journal of the American Chemical Society 2005, 127(47), 16652. https://doi.org/10.1021/ja054474f
- Lee, J. Y.; Jang, Y. W.; Kang, H. S.; Moon, H.; Sim, S. S.; Kim, C. J. Archives of Pharmacal Research 2006, 29(10), 849. https://doi.org/10.1007/BF02973905
- Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. Journal of the American Chemical Society 2004, 126(47), 15392. https://doi.org/10.1021/ja0441716
- Carter, W. O.; Narayanan, P. K.; Robinson, J. P. Journal of Leukocyte Biology 1994, 55(2), 253.
- Lang, J. D.; McArdle, P. J.; O'Reilly, P. J.; Matalon, S. Chest 2002, 122(6), 314S. https://doi.org/10.1378/chest.122.6_suppl.314S
- Feder, L. S.; Stelts, D.; Chapman, R. W.; Manfra, D.; Crawley, Y.; Jones, H.; Minnicozzi, M.; Fernandez, X.; Paster, T.; Egan, R. W.; Kreutner, W.; Kung, T. T. American Journal of Respiratory Cell and Molecular Biology 1997, 17(4), 436. https://doi.org/10.1165/ajrcmb.17.4.2845
- Park, H.; Kim, S.; Song, Y.; Seung, K.; Hong, D.; Khang, G.; Lee, D. Biomacromolecules 2010, 11(8), 2103. https://doi.org/10.1021/bm100474w
- Lee, D.; Khaja, S.; Velasquez-Castano, J. C.; Dasari, M.; Sun, C.; Petros, J.; Taylor, W. R.; Murthy, N. Nature Materials 2007, 6, 765. https://doi.org/10.1038/nmat1983
- Lee, D. W.; Erigala, V. R.; Dasari, M.; Yu, J. H.; Dickson, R. M.; Murthy, N. International Journal of Nanomedicine 2008, 3(4), 471. https://doi.org/10.2217/17435889.3.4.471
- Soh, N. Analytical and Bioanalytical Chemistry 2006, 386(3), 532. https://doi.org/10.1007/s00216-006-0366-9
- Kamyshny, A.; Magdassi, S. Colloids and Surfaces B-Biointerfaces 1998, 11(5), 249. https://doi.org/10.1016/S0927-7765(98)00044-7
- Hadd, A. G.; Lehmpuhl, D. W.; Kuck, L. R.; Birks, J. W. Journal of Chemical Education 1999, 76(9), 1237. https://doi.org/10.1021/ed076p1237
- Motoyoshiya, J.; Sakai, N.; Imai, M.; Yamaguchi, Y.; Koike, R.; Takaguchi, Y.; Aoyama, H. Journal of Organic Chemistry 2002, 67(21), 7314. https://doi.org/10.1021/jo011164g
- Maulding, D. R.; Clarke, R. A.; Roberts, B. G.; Rauhut, M. M. The Journal of Organic Chemistry 1968, 33(1), 250. https://doi.org/10.1021/jo01265a049
- Dasari, M.; Lee, D.; Erigala, V. R.; Murthy, N. Journal of Biomedical Materials Research Part A 2009, 89A(3), 561. https://doi.org/10.1002/jbm.a.32430
- Kim, M. S.; Seo, K. S.; Khang, G.; Cho, S. H.; Lee, H. B. Journal of Biomedical Materials Research Part A 2004, 70A(1), 154. https://doi.org/10.1002/jbm.a.30049
- Lim, C. K.; Lee, Y. D.; Na, J.; Oh, J. M.; Her, S.; Kim, K.; Choi, K.; Kim, S.; Kwon, I. C. Advanced Functional Materials 2010, 20(16), 2644. https://doi.org/10.1002/adfm.201000780
- Sredni-Kenigsbuch, D.; Kambayashi, T.; Strassmann, G. Immunology Letters 2000, 71(2), 97. https://doi.org/10.1016/S0165-2478(99)00157-1
- Hikosaka, K.; Koyama, Y.; Motobu, M.; Yamada, M.; Nakamura, K.; Koge, K.; Shimura, K.; Isobe, T.; Tsuji, N.; Kang, C. B.; Hayashidani, H.; Wang, P. C.; Matsumura, M.; Hirota, Y. Bioscience Biotechnology and Biochemistry 2006, 70(12), 2853. https://doi.org/10.1271/bbb.60242
Cited by
- /NO with Three Different Sets of Fluorescence Signals vol.134, pp.2, 2012, https://doi.org/10.1021/ja2100577
- Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death vol.6, pp.2041-1723, 2015, https://doi.org/10.1038/ncomms7907
- Hydrogen peroxide-responsive micelles self-assembled from a peroxalate ester-containing triblock copolymer vol.4, pp.2, 2016, https://doi.org/10.1039/C5BM00391A
- Nanoparticles based on quantum dots and a luminol derivative: implications for in vivo imaging of hydrogen peroxide by chemiluminescence resonance energy transfer vol.52, pp.22, 2016, https://doi.org/10.1039/C5CC09850E
- Oxalate-curcumin–based probe for micro- and macroimaging of reactive oxygen species in Alzheimer’s disease vol.114, pp.47, 2017, https://doi.org/10.1073/pnas.1706248114
- Possibilities and Challenges for Quantitative Optical Sensing of Hydrogen Peroxide vol.5, pp.4, 2017, https://doi.org/10.3390/chemosensors5040028
- Hydrogen Peroxide-Responsive Nanoprobe Assists Circulating Tumor Cell Identification and Colorectal Cancer Diagnosis vol.89, pp.11, 2017, https://doi.org/10.1021/acs.analchem.7b00497
- Imaging Reactive Oxygen Species-Induced Modifications in Living Systems vol.24, pp.16, 2016, https://doi.org/10.1089/ars.2015.6415
- Quantitative analysis of hydrogen peroxide with special emphasis on biosensors vol.41, pp.3, 2018, https://doi.org/10.1007/s00449-017-1878-8
- Recent advances in hydrogen peroxide imaging for biological applications vol.4, pp.1, 2014, https://doi.org/10.1186/2045-3701-4-64
- Macrophage Targeted Theranostics as Personalized Nanomedicine Strategies for Inflammatory Diseases vol.5, pp.2, 2011, https://doi.org/10.7150/thno.9476
- Oxidative stress in metabolic syndrome & its association with DNA-strand break vol.148, pp.4, 2011, https://doi.org/10.4103/ijmr.ijmr_620_17
- Sensors, Imaging Agents, and Theranostics to Help Understand and Treat Reactive Oxygen Species Related Diseases vol.3, pp.7, 2011, https://doi.org/10.1002/smtd.201900013
- A Photochemical Ligation System Enabling Solid‐Phase Chemiluminescence Read‐Out vol.25, pp.54, 2011, https://doi.org/10.1002/chem.201901858
- Turn-on chemiluminescence probes and dual-amplification of signal for detection of amyloid beta species in vivo vol.11, pp.1, 2020, https://doi.org/10.1038/s41467-020-17783-4
- All Eyes on Visible‐Light Peroxyoxalate Chemiluminescence Read‐Out Systems vol.26, pp.1, 2011, https://doi.org/10.1002/chem.201904054