DOI QR코드

DOI QR Code

Detection of Hydrogen Peroxide in vitro and in vivo Using Peroxalate Chemiluminescent Micelles

  • Lee, Il-Jae (Department of BIN Fusion Technology, Chonbuk National University) ;
  • Hwang, On (Department of BIN Fusion Technology, Chonbuk National University) ;
  • Yoo, Dong-Hyuck (Department of BIN Fusion Technology, Chonbuk National University) ;
  • Khang, Gil-Son (Department of Polymer.Nano Science and Technology, Chonbuk National University) ;
  • Lee, Dong-Won (Department of BIN Fusion Technology, Chonbuk National University)
  • Received : 2011.03.02
  • Accepted : 2011.05.10
  • Published : 2011.07.20

Abstract

Hydrogen peroxide plays a key role as a second messenger in the normal cellular signaling but its overproduction has been implicated in various life-threatening diseases. Peroxalate chemiluminescence is the light emission from a three component reaction between peroxalate, hydrogen peroxide and fluorophores. It has proven great potential as a methodology to detect hydrogen peroxide in physiological environments because of its excellent sensitivity and specificity to hydrogen peroxide. We developed chemiluminescent micelles composed of amphiphilic polymers, peroxalate and fluorescent dyes to detect hydrogen peroxide at physiological concentrations. In this work, we studied the relationship between the chemiluminescence reactivity and stability of peroxalate by varying the substitutes on the aryl rings of peroxalate. Alkyl substitutes on the aryl ring of peroxalate increased the stability against water hydrolysis, but diminished the reactivity to hydrogen peroxide. Chemiluminescent micelles encapsulating diphenyl peroxalate showed significantly higher chemiluminescence intensity than the counterpart encapsulating dimethylphenyl or dipropylphenyl peroxalate. Diphenyl peroxalate-encapsulated micelles could detect hydrogen peroxide generated from macrophage cells stimulated by lipopolysaccharide (LPS) and image hydrogen peroxide generated during LPS-induced inflammatory responses in a mouse.

Keywords

References

  1. Azad, N.; Rojanasakul, Y.; Vallyathan, V. Journal of Toxicology and Environmental Health-Part B-Critical Reviews 2008, 11(1), 1. https://doi.org/10.1080/10937400701436460
  2. Miller, E. W.; Albers, A. E.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. Journal of the American Chemical Society 2005, 127(47), 16652. https://doi.org/10.1021/ja054474f
  3. Lee, J. Y.; Jang, Y. W.; Kang, H. S.; Moon, H.; Sim, S. S.; Kim, C. J. Archives of Pharmacal Research 2006, 29(10), 849. https://doi.org/10.1007/BF02973905
  4. Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. Journal of the American Chemical Society 2004, 126(47), 15392. https://doi.org/10.1021/ja0441716
  5. Carter, W. O.; Narayanan, P. K.; Robinson, J. P. Journal of Leukocyte Biology 1994, 55(2), 253.
  6. Lang, J. D.; McArdle, P. J.; O'Reilly, P. J.; Matalon, S. Chest 2002, 122(6), 314S. https://doi.org/10.1378/chest.122.6_suppl.314S
  7. Feder, L. S.; Stelts, D.; Chapman, R. W.; Manfra, D.; Crawley, Y.; Jones, H.; Minnicozzi, M.; Fernandez, X.; Paster, T.; Egan, R. W.; Kreutner, W.; Kung, T. T. American Journal of Respiratory Cell and Molecular Biology 1997, 17(4), 436. https://doi.org/10.1165/ajrcmb.17.4.2845
  8. Park, H.; Kim, S.; Song, Y.; Seung, K.; Hong, D.; Khang, G.; Lee, D. Biomacromolecules 2010, 11(8), 2103. https://doi.org/10.1021/bm100474w
  9. Lee, D.; Khaja, S.; Velasquez-Castano, J. C.; Dasari, M.; Sun, C.; Petros, J.; Taylor, W. R.; Murthy, N. Nature Materials 2007, 6, 765. https://doi.org/10.1038/nmat1983
  10. Lee, D. W.; Erigala, V. R.; Dasari, M.; Yu, J. H.; Dickson, R. M.; Murthy, N. International Journal of Nanomedicine 2008, 3(4), 471. https://doi.org/10.2217/17435889.3.4.471
  11. Soh, N. Analytical and Bioanalytical Chemistry 2006, 386(3), 532. https://doi.org/10.1007/s00216-006-0366-9
  12. Kamyshny, A.; Magdassi, S. Colloids and Surfaces B-Biointerfaces 1998, 11(5), 249. https://doi.org/10.1016/S0927-7765(98)00044-7
  13. Hadd, A. G.; Lehmpuhl, D. W.; Kuck, L. R.; Birks, J. W. Journal of Chemical Education 1999, 76(9), 1237. https://doi.org/10.1021/ed076p1237
  14. Motoyoshiya, J.; Sakai, N.; Imai, M.; Yamaguchi, Y.; Koike, R.; Takaguchi, Y.; Aoyama, H. Journal of Organic Chemistry 2002, 67(21), 7314. https://doi.org/10.1021/jo011164g
  15. Maulding, D. R.; Clarke, R. A.; Roberts, B. G.; Rauhut, M. M. The Journal of Organic Chemistry 1968, 33(1), 250. https://doi.org/10.1021/jo01265a049
  16. Dasari, M.; Lee, D.; Erigala, V. R.; Murthy, N. Journal of Biomedical Materials Research Part A 2009, 89A(3), 561. https://doi.org/10.1002/jbm.a.32430
  17. Kim, M. S.; Seo, K. S.; Khang, G.; Cho, S. H.; Lee, H. B. Journal of Biomedical Materials Research Part A 2004, 70A(1), 154. https://doi.org/10.1002/jbm.a.30049
  18. Lim, C. K.; Lee, Y. D.; Na, J.; Oh, J. M.; Her, S.; Kim, K.; Choi, K.; Kim, S.; Kwon, I. C. Advanced Functional Materials 2010, 20(16), 2644. https://doi.org/10.1002/adfm.201000780
  19. Sredni-Kenigsbuch, D.; Kambayashi, T.; Strassmann, G. Immunology Letters 2000, 71(2), 97. https://doi.org/10.1016/S0165-2478(99)00157-1
  20. Hikosaka, K.; Koyama, Y.; Motobu, M.; Yamada, M.; Nakamura, K.; Koge, K.; Shimura, K.; Isobe, T.; Tsuji, N.; Kang, C. B.; Hayashidani, H.; Wang, P. C.; Matsumura, M.; Hirota, Y. Bioscience Biotechnology and Biochemistry 2006, 70(12), 2853. https://doi.org/10.1271/bbb.60242

Cited by

  1. /NO with Three Different Sets of Fluorescence Signals vol.134, pp.2, 2012, https://doi.org/10.1021/ja2100577
  2. Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death vol.6, pp.2041-1723, 2015, https://doi.org/10.1038/ncomms7907
  3. Hydrogen peroxide-responsive micelles self-assembled from a peroxalate ester-containing triblock copolymer vol.4, pp.2, 2016, https://doi.org/10.1039/C5BM00391A
  4. Nanoparticles based on quantum dots and a luminol derivative: implications for in vivo imaging of hydrogen peroxide by chemiluminescence resonance energy transfer vol.52, pp.22, 2016, https://doi.org/10.1039/C5CC09850E
  5. Oxalate-curcumin–based probe for micro- and macroimaging of reactive oxygen species in Alzheimer’s disease vol.114, pp.47, 2017, https://doi.org/10.1073/pnas.1706248114
  6. Possibilities and Challenges for Quantitative Optical Sensing of Hydrogen Peroxide vol.5, pp.4, 2017, https://doi.org/10.3390/chemosensors5040028
  7. Hydrogen Peroxide-Responsive Nanoprobe Assists Circulating Tumor Cell Identification and Colorectal Cancer Diagnosis vol.89, pp.11, 2017, https://doi.org/10.1021/acs.analchem.7b00497
  8. Imaging Reactive Oxygen Species-Induced Modifications in Living Systems vol.24, pp.16, 2016, https://doi.org/10.1089/ars.2015.6415
  9. Quantitative analysis of hydrogen peroxide with special emphasis on biosensors vol.41, pp.3, 2018, https://doi.org/10.1007/s00449-017-1878-8
  10. Recent advances in hydrogen peroxide imaging for biological applications vol.4, pp.1, 2014, https://doi.org/10.1186/2045-3701-4-64
  11. Macrophage Targeted Theranostics as Personalized Nanomedicine Strategies for Inflammatory Diseases vol.5, pp.2, 2011, https://doi.org/10.7150/thno.9476
  12. Oxidative stress in metabolic syndrome & its association with DNA-strand break vol.148, pp.4, 2011, https://doi.org/10.4103/ijmr.ijmr_620_17
  13. Sensors, Imaging Agents, and Theranostics to Help Understand and Treat Reactive Oxygen Species Related Diseases vol.3, pp.7, 2011, https://doi.org/10.1002/smtd.201900013
  14. A Photochemical Ligation System Enabling Solid‐Phase Chemiluminescence Read‐Out vol.25, pp.54, 2011, https://doi.org/10.1002/chem.201901858
  15. Turn-on chemiluminescence probes and dual-amplification of signal for detection of amyloid beta species in vivo vol.11, pp.1, 2020, https://doi.org/10.1038/s41467-020-17783-4
  16. All Eyes on Visible‐Light Peroxyoxalate Chemiluminescence Read‐Out Systems vol.26, pp.1, 2011, https://doi.org/10.1002/chem.201904054