DOI QR코드

DOI QR Code

Ruin Probability in a Compound Poisson Risk Model with a Two-Step Premium Rule

이단계 보험요율의 복합 포아송 위험 모형의 파산 확률

  • Song, Mi-Jung (Department of Statistics, Yeungnam University) ;
  • Lee, Ji-Yeon (Department of Statistics, Yeungnam University)
  • Received : 20110200
  • Accepted : 20110600
  • Published : 2011.07.31

Abstract

We consider a compound Poisson risk model in which the premiums may depend on the state of the surplus process. By using the overflow probability of the workload process in the corresponding M/G/1 queueing model, we obtain the probability that the ruin occurs before the surplus reaches a given large value in the risk model. We also examplify the ruin probability in case of exponential claims.

잉여금의 수준에 따라 이단계의 보험요율이 적용되는 복합 포아송 위험 모형을 고려한다. 먼저 이 위험 모형에 대응되는 이단계 서비스율의 M/G/1 대기행렬 모형을 설정하고, M/G/1 대기행렬 모형에서 작업량이 0에 도달하기 전에 과부하가 발생하는 확률을 유도한다. 이과부하 확률을 이용하여 위험모형에서 잉여금이 목표값에 도달하기 전에 파산하는 확률을 구하고, 보험 청구액이 지수분포를 따르는 경우의 파산 확률을 계산한다.

Keywords

References

  1. 이용주(2003). 대재해 위험을 고려한 보험자의 파산확률모형, <경영논총>, 21, 103-124.
  2. 이혜선, 최승경, 이의용 (2009). 보험 상품 파산 확률 근사 방법의 개선 연구, <응용통계연구>, 22, 937-942. https://doi.org/10.5351/KJAS.2009.22.5.937
  3. 이호우(2006). <대기행렬이론: 확률과정론적분석>, 3판, 시그마프레스, 서울
  4. 한수희, 이의용 (2006). 브라운 운동을 이용한 보험 상품의 파산 모형 연구, <응용통계연구>, 19, 579-585. https://doi.org/10.5351/KJAS.2006.19.3.579
  5. Asmussen, S. (2003). Applied Probability and Queues, 2nd ed., Springer, New York.
  6. Asmussen, S. and Petersen, S. S. (1988). Ruin probabilities expressed in terms of storage processes, Advances in Applied Probability, 20, 913-916. https://doi.org/10.2307/1427367
  7. Bae, J., Kim, S. and Lee, E. Y. (2002). A $P_{M}^{\lambda}-policy$ for an M/G/1 queueing system, Applied Mathematical Modeling, 26, 929-939. https://doi.org/10.1016/S0307-904X(02)00045-8
  8. Gerber, H. U. (1990). When does the surplus reach a given target?, Insurance: Mathematics and Economics, 9, 115-119. https://doi.org/10.1016/0167-6687(90)90022-6
  9. Gerber, H. U. and Shiu, E. S. W. (1998). On the time value of ruin, North American Actuarial Journal, 2, 48-78.
  10. Lee, J. (2007). First exit times for compound Poisson dams with a general release rule, Mathematical Methods for Operations Research, 65, 169-178. https://doi.org/10.1007/s00186-006-0111-3
  11. Lin, X. S. and Pavlova, K. P. (2006). The compound Poisson risk model with a threshold dividend strategy, Insurance: Mathematics and Economics, 38, 57-80. https://doi.org/10.1016/j.insmatheco.2005.08.001
  12. Lin, X. S. and Willmot, G. E. (1999). Analysis of a defective renewal equation arising in ruin theory, Insurance: Mathematics and Economics, 25, 63-84. https://doi.org/10.1016/S0167-6687(99)00026-8
  13. Lin, X. S.,Willmot, G. E. and Drekic, S. (2003). The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function, Insurance: Mathematics and Economics, 33, 551-566. https://doi.org/10.1016/j.insmatheco.2003.08.004
  14. Oh, S. M., Jeong, M. and Lee, E. Y. (2007). A martingale approach to a ruin model with surplus following a compound Poisson process, Journal of the Korean Statistical Society, 36, 229-235.
  15. Park, H. S. (2010). Computing the ruin probability of Levy insurance risk processes in non-Cramer models, Communications of the Korean Statistical Society, 17, 483-491. https://doi.org/10.5351/CKSS.2010.17.4.483
  16. Song, M. J. and Lee, J. (2010). A compound Poisson risk model with a two-step premium rule (submitted).

Cited by

  1. A Compound Poisson Risk Model with a Two-Step Premium Rule vol.20, pp.5, 2013, https://doi.org/10.5351/CSAM.2013.20.5.377