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Abstract. Examples of a quartically hyponormal weighted shift which is not 3-

hyponormal are discussed in this note. In [7] Exner-Jung-Park proved that if α(x) :
√
x,

√
2
3
,
√

3
4
,
√

4
5
, · · · with 0 < x ≤ 53252

100000
, then Wα(x) is quartically hyponormal but

not 4-hyponormal. And, Curto-Lee([5]) improved their result such as that if α(x) :
√
x,

√
2
3
,
√

3
4
,
√

4
5
, · · · with 0 < x ≤ 667

990
, then Wα(x) is quartically hyponormal but not

3-hyponormal. In this note, we improve slightly Curto-Lee’s extremal value by using an

algorithm and computer software tool.

1. Introduction

Let H be a separable, infinite dimensional, complex Hilbert space and let L(H)
denotes the set of all bounded linear operators on H. We denote N for the set of
all positive integers. An operator T is weakly n-hyponormal if p(T ) is hyponormal
for all polynomial p(x) with degree ≤ n. For A,B ∈ L(H), let [A,B] := AB −BA.
For n ∈ N and T ∈ L(H), T is (strongly) n-hyponormal if the operator matrix
([T ∗j , T i])ni,j=1 is positive on the direct sum H⊕ · · ·⊕H (n-copies), which is equiv-

alent to (T ∗jT i)ni,j=0is positive([2]).

It is well-known that subnormal ⇒ n-hyponormal ⇒ weakly n-hyponormal, for
every n ≥ 1; the study for the gaps among those operator classes was discussed in
[2], [3], [4] and [8]. In particular, unilateral weighted shifts were considered to study
such gaps (cf. [2], [3], [4], [8] and [9]). In particular, an operator T is referred to be
quadratically (cubically, or quartically, resp.) hyponormal if weakly 2- (weakly 3-,
or weakly 4-, resp.) hyponormal.

In [6] Curto-Putinar proved that the polynomial hyponormality can not be
always 2-hyponormality. But one does not know concrete examples of polyno-
mially hyponormal but not 2-hyponormal yet. For a weight sequence α(x) :
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√
x,
√

2
3 ,
√

3
4 ,
√

4
5 , · · · with a positive real variable x, it is known that the corre-

sponding weighted shift Wα(x) is quadratically hyponormal if and only if 0 < x ≤√
2
3 ([1]). And also in [1], one gave a question: “Find the interval for cubic hy-

ponormality of Wα(x)”. This question is the one-step progress to find a concrete
example for the gap between polynomially hyponormal and subnormal operators. In

[7] Exner-Jung-Park found an example; if α :
√

141
250 ,

√
2
3 ,
√

3
4 ,
√

4
5 , · · · , is a weight

sequence, then Wα is cubically hyponormal but not 2-hyponormal. So it is worth-
while to solve the following problem.

Problem 1.1. Find a quartically hyponormal weighted shift but not 2-hyponormal.

In [7] Exner-Jung-Park proved that if α(x) :
√
x,
√

2
3 ,
√

3
4 ,
√

4
5 , · · · with 0 < x ≤

53252
100000 , then Wα(x) is quartically hyponormal but not 4-hyponormal, which also was

improved by Curto-Lee in [5]; if α(x) :
√
x,
√

2
3 ,
√

3
4 ,
√

4
5 , · · · with 0 < x ≤ 667

990 , then

Wα(x) is quartically hyponormal but not 3-hyponormal. In this note we improve
slightly some known results in the same context.

This note consists of four sections. In Section 2, we give some useful and crucial
lemmas which will be used in the later sections. In Section 3, for a weighted shift
Wα(x) with Bergmann tail beginning by positive real variable x, we construct the
main algorithm for its quartic hyponormality. By using the main algorithm, we

prove that if α(x) : α0 =
√
x, αn =

√
n+2
n+3 (n ≥ 1) with 0 < x ≤ δ̂ (see Theorem

3.1) for the number δ̂ > 667
990 , then Wα(x) is quartically hyponormal but not 3-

hyponormal. In Section 4, we prove the main theorem and conclude our results.
Some of the calculations in this note were obtained through computer experi-

ments using the software tool Mathematica [10].

2. Some lemmas

We begin with a characterization for a quartically hyponormal weighted shift
Wα with a weight sequence α = {αn}n∈N0 , where N0 := N ∪ {0}.

Lemma 2.1([7, Th. 2.3]). Suppose Wα is a contractive hyponormal weighted shift
with weight sequence α := {αn}n∈N0

. Then Wa is quartically hyponormal if and
only if the following holds:

(2.1) ∆α
4 (φ, p, q) := γ4 |φ4p0|2 +

〈[
γ3 γ4

γ4 γ5

] [
φ3p0

φ4p1

]
,

[
φ3p0

φ4p1

]〉

+

〈 γ2 γ3 γ4

γ3 γ4 γ5

γ4 γ5 γ6

 φ2p0

φ3p1

φ4p2

,
 φ2p0

φ3p1

φ4p2

〉+

〈
γ1 γ2 γ3 γ4

γ2 γ3 γ4 γ5

γ3 γ4 γ5 γ6

γ4 γ5 γ6 γ7




p0

φ2p1

φ3p2

φ4p3

,

p0

φ2p1

φ3p2

φ4p3


〉
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+

∞∑
k=0

〈
γk γk+1 γk+2 γk+3 γk+4

γk+1 γk+2 γk+3 γk+4 γk+5

γk+2 γk+3 γk+4 γk+5 γk+6

γk+3 γk+4 γk+5 γk+6 γk+7

γk+4 γk+5 γk+6 γk+7 γk+8




qk
pk+1

φ2pk+2

φ3pk+3

φ4pk+4

 ,


qk
pk+1

φ2pk+2

φ3pk+3

φ4pk+4


〉
≥ 0

for any φ :≡ {φi}3i=2, p :≡ {pi}∞i=0, and q :≡ {qi}∞i=0 in C.

For brevity we denote γk := α2
0α

2
1 · · ·α2

k−1, k ∈ N0, which sometimes are said
to be moments (cf. [2]).

3. Results

The following theorem is contained in our main results of this note.

Theorem 3.1. Let α(x) : α0 =
√
x, αn =

√
n+2
n+3 (n ≥ 1). If 0 < x ≤ δ̂,

where δ̂ = 844406080653836692089752
1253126026358282939343663 , then Wα(x) is quartically hyponormal but not

3-hyponormal.

Proof. The proof of this proposition will be appeared in the next section. �

To prove Theorem 3.1, we need several lemmas and algorithm. First we restate
Lemma 2.1 with the weighted shift in Theorem 3.1.

Lemma 3.2. Let α(x) : α0 =
√
x, αn =

√
n+2
n+3 (n ≥ 1). Then Wa(x) is quartically

hyponormal if and only if the following holds:

(3.1)
1

3x
∆(a, b, c, p, q) :=

1

6
|cp0|2 +

〈[
1
5

1
6

1
6

1
7

] [
bp0

cp1

]
,

[
bp0

cp1

]〉

+

〈 1
4

1
5

1
6

1
5

1
6

1
7

1
6

1
7

1
8

 ap0

bp1

cp2

 ,
 ap0

bp1

cp2

〉+

〈
1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

1
5

1
6

1
7

1
8

1
6

1
7

1
8

1
9




p0

ap1

bp2

cp3

 ,


p0

ap1

bp2

cp3


〉

+

〈
1

3x
1
3

1
4

1
5

1
6

1
3

1
4

1
5

1
6

1
7

1
4

1
5

1
6

1
7

1
8

1
5

1
6

1
7

1
8

1
9

1
6

1
7

1
8

1
9

1
10




q0

p1

ap2

bp3

cp4

 ,


q0

p1

ap2

bp3

cp4


〉

+

∞∑
k=1

〈
1
k+2

1
k+3

1
k+4

1
k+5

1
k+6

1
k+3

1
k+4

1
k+5

1
k+6

1
k+7

1
k+4

1
k+5

1
k+6

1
k+7

1
k+8

1
k+5

1
k+6

1
k+7

1
k+8

1
k+9

1
k+6

1
k+7

1
k+8

1
k+9

1
k+10




qk
pk+1

apk+2

bpk+3

cpk+4

 ,


qk
pk+1

apk+2

bpk+3

cpk+4


〉
≥ 0

for any a, b, c, p :≡ {pi}i∈N0
, and q :≡ {qi}i∈N0

in C.
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We now discuss our main algorithm as following.

Algorithm 3.3.

Step I. 1◦ Fix n ≡ 0 (mod 3). Say n = 3k.
2◦ Find ε3k > 0 satisfying det Φ3k(ε3k) = 0, where

(3.2) Φj(t) :=


1
j+2

1
j+3

1
j+4

1
j+5

1
j+6

1
j+3

1
j+4 − t

1
j+5

1
j+6

1
j+7

1
j+4

1
j+5

1
j+6

1
j+7

1
j+8

1
j+5

1
j+6

1
j+7

1
j+8

1
j+9

1
j+6

1
j+7

1
j+8

1
j+9

1
j+10

 , j ≥ 1.

3◦ Find ε3k−1 > 0 satisfying det Φ3k−1(ε3k−1) = 0.
4◦ Find ε3k−2 > 0 satisfying det Φ3k−2(ε3k−2) = 0.

Step II. 1◦ Consider the matrix

Ψ3j−3(s, t, u, v, a, b, c) =

1
3j−1

1
3j

a
3j+1

b
3j+2

c
3j+3

1
3j

1
3j+1 − s

a
3j+2

b
3j+3

c
3j+4

ā
3j+1

ā
3j+2

|a|2
3j+3 + t āb

3j+4
āc

3j+5
b̄

3j+2
b̄

3j+3
ab̄

3j+4
|b|2

3j+5 + u b̄c
3j+6

c̄
3j+3

c̄
3j+4

ac̄
3j+5

bc̄
3j+6

|c|2
3j+7 + v

 , 2 ≤ j ≤ k,

and find ε3k−3 := ε3k−3(a, b, c) > 0 such that

(3.3) det Ψ3k−3(ε3k−3, ε3k−2, ε3k−1, ε3k, a, b, c) = 0

for all a, b, c ∈ C.
2◦ Find ε3k−4 > 0 satisfying det Φ3k−4(ε3k−4) = 0.
3◦ Find ε3k−5 > 0 satisfying det Φ3k−5(ε3k−5) = 0.
4◦ Find ε3k−6 := ε3k−6(a, b, c) > 0 satisfying

det Ψ3k−6(ε3k−6, ε3k−5, ε3k−4, ε3k−3, a, b, c) = 0

for all a, b, c ∈ C.
Step III. By repeating Step II, find ε3k−7, ε3k−8, ε3k−9, · · · , ε2, ε1.

Step IV. Consider the matrix

(3.4) Ψ0(x, a, b, c) :=


1

3x
1
3

1
4a

1
5b

1
6c

1
3 φ(a, b, c) 1

5a
1
6b

1
7c

1
4a

1
5a

1
6 |a|

2 + ε1
1
7ba

1
8ca

1
5b

1
6b

1
7ab

1
8 |b|

2 + ε2
1
9cb

1
6c

1
7c

1
8ac

1
9bc

1
10 |c|

2 + ε3

 ,
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where

φ(a, b, c) =
1

4
+

1

252
|c|2 +

1

7350
|b|2 +

1 + 200|c|2

17640(2 + 25|c|2)
|a|2,

and find a range R of x such that Ψ0(x, a, b, c) ≥ 0, for all a, b, c ∈ C by using
Determinant Nested Test (cf. [2]).

Proposition 3.4. For given k ∈ N, the values εj , 1 ≤ j ≤ 3k, can be obtained
recursively.

Proof. The proof of this proposition also will be appeared in the next section. �

The following lemma shows the reason why we give Algorithm 3.3 and its legit-
imacy.

Lemma 3.5. Under the same notation of Algorithm 3.3, it holds that if

1

3x
∆(a, b, c, p, q) =

〈[
1
5

1
6

1
6

1
7 −

1
252

] [
bp0

cp1

]
,

[
bp0

cp1

]〉

+

〈 1
4

1
5

1
6

1
5

1
6 −

1
7350

1
7

1
6

1
7

1
8

 ap0

bp1

cp2

 ,
 ap0

bp1

cp2

〉

+

〈
1
3 + |c|2

6
1
4

1
5

1
6

1
4

1
5 −

200|c|2+1
17640(25|c|2+2)

1
6

1
7

1
5

1
6

1
7

1
8

1
6

1
7

1
8

1
9




p0

ap1

bp2

cp3

 ,


p0

ap1

bp2

cp3


〉

+

〈
Ψ0(x, a, b, c)


q0

p1

p2

p3

p4

 ,

q0

p1

p2

p3

p4


〉

+
∑

j 6≡0 (mod3)
1≤j≤n

〈
Φj(εj)


qj
pj+1

apj+2

bpj+3

cpj+4

 ,


qj
pj+1

apj+2

bpj+3

cpj+4


〉

+
∑

j≡0 (mod3)
1≤j≤n

〈
Ψj(εj , εj+1, εj+2, εj+3, a, b, c)


qj
pj+1

pj+2

pj+3

pj+4

 ,


qj
pj+1

pj+2

pj+3

pj+4


〉

+

∞∑
k=n+1

〈
1
k+2

1
k+3

1
k+4

1
k+5

1
k+6

1
k+3

1
k+4

1
k+5

1
k+6

1
k+7

1
k+4

1
k+5

1
k+6

1
k+7

1
k+8

1
k+5

1
k+6

1
k+7

1
k+8

1
k+9

1
k+6

1
k+7

1
k+8

1
k+9

1
k+10




qk
pk+1

apk+2

bpk+3

cpk+4

 ,


qk
pk+1

apk+2

bpk+3

cpk+4


〉
≥ 0,

for any a, b, c, p :≡ {pi}∞i=0, and q :≡ {qi}∞i=0 in C, then ∆α
4 (a, b, c, p, q) ≥ 0 for

any a, b, c, p :≡ {pi}i∈N0
, and q :≡ {qi}i∈N0

in C. Hence if x ∈ R, then Wα(x) is
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quartically hyponormal.

4. Proof of Theorem 3.1

First we find the regions of 2- and 3-hyponormality as following.

Lemma 4.1. Let α(x, y) : α0 =
√
x, α1 =

√
y, αn =

√
n+2
n+3 (n ≥ 2). Then we have

the following assertions:
1◦ Wα(x,y) is 2-hyponormal if and only if 0 < y ≤ 25

33 , 0 < x ≤ 2y
5(15y2−24y+10) .

2◦ Wα(x,y) is 3-hyponormal if and only if 0 < y ≤ 100
133 , 0 < x ≤

50y
5(6433y2−9800y+3750) .

Proof of Proposition 3.4. For k ≥ 1 in the Algorithm 3.3 Step I, we may compute
ε3k, ε3k−1, ε3k−2 as following:

ε3k =
4

9(k + 1)2(k + 2)2(3k + 4)(3k + 5)2(3k + 7)2
,

ε3k−1 =
4

3(k + 1)(k + 2)2(3k + 2)2(3k + 4)2(3k + 5)2
,

ε3k−2 =
4

(k + 1)2(3k + 1)2(3k + 2)(3k + 4)2(3k + 5)2
.

By using these values, we obtain an expression ε3k−3 in the step II and we compute

the value ε27(a, b, c) with k = 10; in fact, ε27(a, b, c) = ϕ(a,b,c)
φ(a,b,c) with

ϕ(a, b, c) = a0 + a1|a|2 + a2|b|2 + a3|c|2 + a4|a|2|b|2 + a5|a|2|c|2

+a6|b|2|c|2 + a7|a|2|b|2|c|2;

φ(a, b, c) = 41738400(b0 + +b1|a|2 + b2|b|2 + b3|c|2 + b4|a|2|b|2

+b5|a|2|c|2 + b6|b|2|c|2 + b7|a|2|b|2|c|2),

where

a0 = 4488, a1 = 728229425, a2 = 7131317760, a3 = 31015353600,

a4 = 1000984446000, a5 = 16432968182400, a6 = 38026703232000,

a7 = 17428905648000;

b0 = 3, b1 = 498467200, b2 = 1297794960, b3 = 2662934400,

b4 = 186536395584000, b5 = 1444773283430400, b6 = 888874188048000,

b7 = 417178285590528000.

And we repeat the method of Step I to obtain ε3k−4, ε3k−5 as following:

ε3k−4 =
4

3k(3k − 1)2(k + 1)2(3k + 1)2(3k + 2)2
,

ε3k−5 =
4

k2(3k − 2)2(3k − 1)(3k + 1)2(3k + 2)2
.
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Because the next step follows similar process, we obtain the values εj for 0 < j ≤
3k − 6 recursively. �

Before proving Theorem 3.1, we obtain the following diagram for our conve-
nience. We take k = 10, and obtain the following table.

Table 4.1

j 30 29 28 26 25 23
εj

1
2235366995400

1
1722702643200

1
1317324192800

1
751045025280

1
559341977600

1
300858667200

j 22 20 19 17 16 14
εj

1
216965385000

1
108622215000

1
75252320000

1
34411238400

1
22645104020

1
921817800

j 13 11 10 8 7 5
εj

1
5655859200

1
1957616640

1
1094038400

1
300600300

1
145745600

1
27878400

j 4 2 1 * * *
εj

1
10672200

1
1058400

1
250880 * * *

.

We now prove Theorem 3.1 by using Proposition 3.4.

Proof of Theorem 3.1. To apply Step II 1◦ of Algorithm 3.3, we first consider
det Ψ27(ε27, ε28, ε29, ε30, a, b, c) with

ε28 =
1

1317324192800
, ε29 =

1

1722702643200
, ε30 =

1

2235366995400
,

and also obtain an expression ε27 := ε27(a, b, c) in Step II 1◦ of Algorithm 3.3 such
that

det Ψ27(ε27, ε28, ε29, ε30, a, b, c) = 0.

With ε25 = 1
559341977600 , ε26 = 1

751045025280 , and ε27 = ε27(a, b, c), we find ε24 :=
ε24(a, b, c) > 0 satisfying

det Ψ24(ε24, ε25, ε26, ε27, a, b, c) = 0.

Continuing this process 9-times, we obtain ε3 := ε3(a, b, c) such that

det Ψ3(ε3,
1

10672200
,

1

27878400
, ε6, a, b, c) = 0,

where ε6 is in the value of 8-times process. Finally, we substitute the values ε1 =
1

250880 , ε2 = 1
1058400 , and ε3 in the matrix Ψ0(x, a, b, c) of (3.4) in Step IV. Then we

obtain

det Ψ0(x, a, b, c) = F (x, a, b, c) ·
∑

(i,j,k)∈Γ

(Aijk −Bijkx) |a|2i |b|2j |c|2k

for some positive real function F (x, a, b, c), positive real numbers Aijk and Bijk
(note that the cardinality of Γ is large, in fact, more than at least 103). By long
and boring computations, we obtain that

min{Aijk
Bijk

: (i, j, k) ∈ Γ} =
844406080653836692089752

1253126026358282939343663
=: δ̂.
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Hence obviously, if 0 < x ≤ δ̂, then Wα(x) is quartically hyponormal but not 3-
hyponormal. �

Remark 4.2. If we give repeat the processes in proof of Theorem 3.1 with n > 10,

we are able to obtain the bigger value δ̂n > δ̂. We do not know whether or not there
exists a sufficient large N ∈ N such that Wα(δ̂N ) is quartically hyponormal but not

2-hyponormal. In fact, the existence of such a large number N solves Problem 1.1.
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