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Abstract. The purpose of this note is to give Opial type inequalities with nonlocal con-

ditions. Also, a reverse of the original inequality with y(a) = y(b) = 0 is derived. We

apply these inequalities to second-order differential equations with nonlocal conditions to

derive several necessary conditions for the existence of solutions.

1. Introduction

In 1960 Z. Opial [10] proved the following integral inequality

Theorem 1. Let y(x) be of class C(1)[0, b] and y(0) = y(b) = 0. Then

(1.1)

∫ b

0

| y(x)y′(x) | dx ≤ b

4

∫ b

0

| y′(x) |2 dx.

Olech [9] also showed that

(1.2)

∫ b

a

| y(x)y′(x) | dx ≤ b− a
4

∫ b

a

| y′(x) |2 dx

is valid for any function which is absolutely continuous on [a, b] and satisfies y(a) =
y(b) = 0. In 1962 Beesack [1] used this result to obtain a simplification of proofs
given earlier by Olech [9] and Opial [10] of the following result.
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Theorem 2. Let y(x) be real, continuously differentiable on [a, b] and y(a) = y(b) =
0. Then, inequality (1.2) holds.

For other generalizations of Opial’s original inequality in different directions,
see [3] and [11].
Also, a generalization of (1.2) obtained by Das [5] is the following:

Theorem 3. If y ∈ C(n−1)[a, b] with y(i)(a) = y(i)(b) = 0 for i = 0, 1, ..., n− 1. Let
y(n−1) be absolutely continuous and y(n) ∈ L2. Then

(1.3)

∫ b

a

| y(x)y(n)(x) | dx ≤ K(
b− a

2
)n
∫ b

a

| y(n)(x) |2 dx,

where K = 1
2n!

(
n

2n−1

) 1
2

.

Recently, Brown [2] considered the inequality

(1.4)

∫ b

a

| y(x)y′(x) | dx ≤ K(b− a)

∫ b

a

y′2(x)dx,

where y : [a, b] → < is absolutely continuous function such that y′ ∈ L2 and∫ b
a
y(x)dx = 0, and proved the following result which was conjectured by one of

the authors in 2001 and presented as an open problem in the meeting ” General
Inequalities 8” at Noszvaj, Hungary, in September 2002.

Theorem 4. The best value of K in (1.4) is 1
4 .

Also, Kwong obtained an answer to this problem in [7].
The purpose of this note is to give new Opial type inequalities with nonlocal con-
ditions ∫ a+b

2

a

y(x)dx = 0 and

∫ b

a+b
2

y(x)dx = 0.

Also, a reverse of the original inequality with y(a) = y(b) = 0 is derived. We apply
these inequalities to second-order differential equations with nonlocal conditions to
derive several necessary conditions for the existence of solutions.

2. Opial type inequalities with nonlocal conditions

Here, we shall give simpler proof of Opial type inequalities with nonlocal con-
ditions. Our main tool is the following Lemma.

Lemma 1. Let y : [α, β] → < be an absolutely continuous function such that
y′ ∈ L2.

If
∫ β
α
y(x)dx = 0. Then,

(2.1)

∫ β

α

| y(x) |2 dx ≤ (β − α)2

π2

∫ β

α

| y′(x) |2 dx.
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This inequality is called Wirtinger’s inequality [8].

Theorem 5. Let y : [a, b] → < be an absolutely continuous function such that
y′ ∈ L2. If ∫ a+b

2

a

y(x)dx = 0 and

∫ b

a+b
2

y(x)dx = 0,

then

(2.2)

∫ b

a

| y(x)y′(x) | dx ≤ K(b− a)

∫ b

a

| y′(x) |2 dx,

where K = 1
2π .

Proof. Apply Schwarz’s inequality to [a, a+b2 ], we get

(2.3)

∫ a+b
2

a

| y(x)y′(x) | dx ≤

(∫ a+b
2

a

| y(x) |2 dx

) 1
2
(∫ a+b

2

a

| y′(x) |2 dx

) 1
2

and use Lemma 1 with α = a and β = a+b
2 , to obtain that

(2.4)

∫ a+b
2

a

| y(x)y′(x) | dx ≤ b− a
2π

∫ a+b
2

a

| y′(x) |2 dx.

Similarly, and again on [a+b2 , b], we get

(2.5)

∫ b

a+b
2

| y(x)y′(x) | dx ≤ b− a
2π

∫ b

a+b
2

| y′(x) |2 dx,

and then add (2.4) and (2.5), we get (2.2). This completes the proof. 2

The following is a generalization of Theorem 5.

Theorem 6. Let y : [a, b]→ < and z : [a, b]→ < be absolutely continuous functions
such that y′ ∈ L2 and z′ ∈ L2. If∫ a+b

2

a

y(x)dx =

∫ b

a+b
2

y(x)dx = 0

and ∫ a+b
2

a

z(x)dx =

∫ b

a+b
2

z(x)dx = 0.

Then

(2.6)

∫ b

a

[| y(x)z′(x) | + | y′(x)z(x) |] dx ≤ b− a
2π

∫ b

a

[
| y′(x) |2 + | z′(x) |2

]
dx.
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Proof. On [a, a+b2 ], we apply Schwarz’s inequality to obtain

(2.7)

∫ a+b
2

a

| y(x)z′(x) | dx ≤

(∫ a+b
2

a

| y(x) |2 dx

) 1
2
(∫ a+b

2

a

| z′(x) |2 dx

) 1
2

.

Using Lemma 1 with α = a and β = a+b
2 , we obtain

(2.8)∫ a+b
2

a

| y(x)z′(x) | dx ≤ b− a
2π

(∫ a+b
2

a

| y′(x) |2 dx

) 1
2
(∫ a+b

2

a

| z′(x) |2 dx

) 1
2

.

Similarly, and again on [a+b2 , b], we get

(2.9)

∫ b

a+b
2

| y(x)z′(x) | dx ≤ b− a
2π

(∫ b

a+b
2

| y′(x) |2 dx

) 1
2
(∫ b

a+b
2

| z′(x) |2 dx

) 1
2

.

Thus, summing up (2.8) and (2.9), we get∫ b

a

| y(x)z′(x) | dx

≤ b− a
2π

(∫ a+b
2

a

| y′ |2 dx
∫ a+b

2

a

| z′ |2 dx

) 1
2

+

(∫ b

a+b
2

| y′ |2 dx
∫ b

a+b
2

| z′ |2 dx

) 1
2

 .
Applying the arithmetic-geometric mean inequality to the right-hand side of this
inequality to get∫ b

a

| y(x)z′(x) | dx

≤ b− a
2π

∫ a+b
2

a
| y′ |2 dx+

∫ a+b
2

a
| z′ |2 dx

2
+

∫ b
a+b
2
| y′ |2 dx+

∫ b
a+b
2
| z′ |2 dx

2

 .
Therefore, ∫ b

a

| y(x)z′(x) | dx ≤ b− a
4π

∫ b

a

[
| y′(x) |2 + | z′(x) |2

]
dx.(2.10)

Similarly, we also obtain,∫ b

a

| y′(x)z(x) | dx ≤ b− a
4π

∫ b

a

[
| y′(x) |2 + | z′(x) |2

]
dx.(2.11)

Adding side to side (2.10) and (2.11), we obtain (2.6). 2
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Remark 1. Theorem 6 with z = y reduces to Theorem 5.

Theorem 7. Let y : [a, b] → < be an absolutely continuous function such that
y′ ∈ L2. If ∫ a+b

2

a

y(x)dx = k1 and

∫ b

a+b
2

y(x)dx = k2,

where ki ∈ <, i = 1, 2. Then
(2.12)∫ b

a

| y(x)y′(x) | dx ≤ b− a
2π

∫ b

a

| y′(x) |2 dx+ sup(| γ1 |, | γ2 |)
∫ b

a

| y′(x) | dx,

where γi = 2ki
b−a , i = 1, 2.

Proof. Since
∫ a+b

2

a
y(x)dx = k1 and

∫ a+b
2

a
y(x)dx = k2. It follows from the first

value theorem of integral that there exist c1 ∈ (a, a+b2 ) and c2 ∈ (a+b2 , b) such that

y(c1) = 2k1
b−a and y(c2) = 2k2

b−a .

Let zi(x) = y(x) − γi, i = 1, 2. This gives
∫ a+b

2

a
z1(x)dx = 0 and

∫ b
a+b
2
z2(x)dx = 0

and then we can apply Lemma 1 and Schwarz’s inequality to obtain

(2.13)

∫ a+b
2

a

| z1(x)z′1(x) | dx ≤ b− a
2π

∫ a+b
2

a

| z′1(x) |2 dx

and

(2.14)

∫ b

a+b
2

| z2(x)z′2(x) | dx ≤ b− a
2π

∫ b

a+b
2

| z′2(x) |2 dx.

Adding side to side (2.13) and (2.14), we obtain

∫ a+b
2

a

| z1(x)z′1(x) | dx+

∫ b

a+b
2

| z2(x)z′2(x) | dx

≤ b− a
2π

(∫ a+b
2

a

| z′1(x) |2 dx+

∫ b

a+b
2

| z′2(x) |2 dx

)
.

(2.15)

So that ∫ a+b
2

a

| (y(x)− γ1)y′(x) | dx+

∫ b

a+b
2

| (y(x)− γ2)y′(x) | dx

≤ b− a
2π

∫ b

a

| y′(x) |2 dx.

(2.16)
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Now, applying the inequality | a− b |≥| a | − | b | to the left-hand side of (2.16), we
get ∫ b

a

| y(x)y′(x) | dx

≤ b− a
2π

∫ b

a

| y′(x) |2 dx+ | γ1 |
∫ a+b

2

a

| y′(x) | dx+ | γ2 |
∫ b

a+b
2

| y′(x) | dx,

(2.17)

which is indeed (2.12). 2

3. Reverse inequalities of opial

In the following the reverse of Opial’s inequalities are derived.

Theorem 8. Let y : [a, b] → < be an absolutely continuous function such that
y′ ∈ L2. If y(a) = 0, then

(3.1)
1

2

∫ b

a

| y(x) |2 dx ≤
∫ b

a

(b− x) | y(x)y′(x) | dx.

Equality holds only for y = c(x− a), where c is a constant.
Also, if y(b) = 0, then

(3.2)
1

2

∫ b

a

| y(x) |2 dx ≤
∫ b

a

(x− a) | y(x)y′(x) | dx

and equality holds only for y = c(b− x).

Proof. For y(a) = 0, we have

y2(x)

2
=

∫ x

a

y(t)y′(t)dt.

Therefore

(3.3)
1

2

∫ b

a

| y(x) |2 dx ≤
∫ b

a

(∫ x

a

| y(t)y′(t) | dt
)
dx =

∫ b

a

(b−x) | y(x)y′(x) | dx.

Since the equality holds in (3.1) only if y′ = c, substitution of y = cx+ d into (3.1)
and standard argument leads to d = −ca.
The proof of (3.2) is similar using

− y2(x)

2
=

∫ b

x

y(t)y′(t)dt. 2

We have therefore the following corollary of Theorem 8.
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Corollary 1. Let y : [a, b] → < be an absolutely continuous function such that
y′ ∈ L2. If y(a) = y(b) = 0, then

(3.4)
1

b− a

∫ b

a

| y(x) |2 dx ≤
∫ b

a

| y(x)y′(x) | dx

with equality if and only if y = 0.

Remark 2. The Opial’s original inequality can be stated as

(3.5)
1

b− a

∫ b

a

| y(x) |2 dx ≤
∫ b

a

| y(x)y′(x) | dx ≤ b− a
4

∫ b

a

| y′(x) |2 dx.

4. Applications

Opial inequalities with boundary conditions have various applications in the
theory of differential equations. In [6], Harris and Kong obtained the following
results:
If y is solution of y′′ + q(x)y = 0, a ≤ x ≤ b with no zeros in (a, b) and such that
y′(a) = y(b) = 0, then

(b− a) max
a≤x≤b

|
∫ x

a

q(t)dt |> 1

and if y(a) = y′(b) = 0, then

(b− a) max
a≤x≤b

|
∫ b

x

q(t)dt |> 1.

Brown [3] also obtained several results which related to this problem. Two of his
results state that

Theorem 9. If y is a nontrivial solution of y′′ + q(x)y = 0 with y(a) = y′(b) = 0,
then

1 < 2

∫ b

a

Q2(x)(x− a)dx,

where Q(x) =
∫ b
x
q(t)dt. If y′(a) = y(b) = 0, then

1 < 2

∫ b

a

Q2(x)(b− x)dx,

where Q(x) =
∫ x
a
q(t)dt.

Remark 3. These results can be extended to a class of second order differential
equations with integral conditions.

We have
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Theorem 10. Let y be a nontrivial solution of

(4.1) y′′ + p(x)y′ + q(x)y = 0, a ≤ x ≤ b,

where p, q ∈ C[a, b]. If
∫ a+b

2

a
y(x)dx = 0 and

∫ b
a+b
2
y(x)dx = 0, then there exists

[α, β] ⊂ [a, b] such that

(4.2)
β − α

4

(
max
α≤x≤β

| p(x) | +2 max
α≤x≤β

|
∫ x

α

q(t)dt |
)
≥ 1.

Proof. By the first value theorem of integral there exist α ∈ (a, a+b2 ) and β ∈ (a+b2 , b)
such that y(α) = 0 and y(β) = 0.
Multiplying (4.1) by y and integrating by parts over [α, β] gives

−
∫ β

α

y′2(x)dx+

∫ β

α

p(x)y(x)y′(x)dx+

∫ β

α

q(x)y2(x)dx = 0.

Since
∫ β
α
q(x)y2(x)dx = −2

∫ β
α

(
∫ x
α
q(t)dt)y(x)y′(x)dx.

Thus∫ β

α

y′2(x)dx ≤
∫ β

α

| p(x) || y(x)y′(x) | dx+ 2

∫ β

α

|
∫ x

α

q(t)dt || y(x)y′(x) | dx.

Consequently,

(4.3)

∫ β

α

y′2(x)dx ≤
(

max
α≤x≤β

| p(x) | +2 max
α≤x≤β

|
∫ x

α

q(t)dt |
)∫ β

α

| y(x)y′(x) | dx.

Applying Opial inequality (1.2) to (4.3), we obtain

(4.4)

∫ β

α

y′2(x)dx ≤ β − α
4

(
max
α≤x≤β

| p(x) | +2 max
α≤x≤β

|
∫ x

α

q(t)dt |
)∫ β

α

y′2(x)dx.

By canceling
∫ β
α
y′2(x)dx, we get (4.2). 2

In order to illustrate a possible practical use of inequality (4.2), we present a
simple example.

Example 1. Consider the following nonlocal boundary value problem{
y′′ + p(x)y′ + q(x)y = 0, 0 ≤ x ≤ 2,∫ 1

0
y(x)dx =

∫ 2

1
y(x)dx = 0,

(4.5)

where

p(x) =

{
2x− 1, 0 ≤ x ≤ 1,
2x− 3, 1 ≤ x ≤ 2

(4.6)
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and q(x) = −2. The exact solution of (4.5) is

y(x) =

{
x− 1

2 , 0 ≤ x ≤ 1,
x− 3

2 , 1 ≤ x ≤ 2.
(4.7)

A direct calculation produces there exists [α, β] = [12 ,
3
2 ] such that y(α) = y(β) = 0,

max
1
2≤x≤

3
2

| p(x) |= 1

and

max
1
2≤x≤

3
2

|
∫ x

1
2

q(t)dt |= max
1
2≤x≤

3
2

2

(
x− 1

2

)
= 2.

Thus,
β − α

4

(
max
α≤x≤β

| p(x) | +2 max
α≤x≤β

|
∫ x

α

q(t)dt |
)

=
5

4
> 1.

Now, we shall use our main result to derive a new estimate for the following
nonlocal boundary value problem{

(p(x)y′)
′
+ λy = 0, a ≤ x ≤ b,∫ a+b

2

a
y(x)dx =

∫ b
a+b
2
y(x)dx = 0,

(8)

where p ∈ C1[a, b] and λ 6= 0.
For that, we reduce problem (8) to an equivalent problem.

Lemma 2. Problem (8) is equivalent to the following problem{
(p(x)y′)

′
+ λy = 0, a ≤ x ≤ b,

αy′(a)− βy′(b) = 0,
(9)

where α = p(a) and β = p(b).

Proof. Let y be a solution of (8). Integrating (p(x)y′)
′
+ λy = 0 over [a, a+b2 ], and

again on [a+b2 , b] and taking into account
∫ a+b

2

a
y(x)dx =

∫ b
a+b
2
y(x)dx = 0, we obtain

(10) p(
a+ b

2
)y′(

a+ b

2
)− p(a)y′(a) = 0

and

(11) p(b)y′(b)− p(a+ b

2
)y′(

a+ b

2
) = 0.

From (10) and (11), it follows that

(12) αy′(a)− βy′(b) = 0.
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Let now y be a solution of (9). For this end we integrate the same equation over

[a, a+b2 ] and using (10), we get
∫ a+b

2

a
y(x)dx = 0. The proof of

∫ b
a+b
2
y(x)dx = 0 is

similar using integration on [a+b2 , b] and inequality (11). 2

Now, by using Opial’s inequality (2.2) and Lemma 2, we prove the following
result

Theorem 11. Let y be a nontrivial solution of (8). If 0 < m ≤ p′(x) ≤M for a ≤
x ≤ b and α = β, then,

(13) m ≤ 2 | λ | b− a
π

.

Proof. Multiplying (p(x)y′)
′

+ λy = 0 by y′, integrating by parts over [a, b] and
taking into account αy′(a)− βy′(b) = 0 with α = β gives

−1

2

∫ b

a

p′(x)y′2(x)dx+ λ

∫ b

a

yy′dx = 0.

Thus,

(14)
1

2

∫ b

a

p′(x)y′2(x)dx ≤| λ |
∫ b

a

| y(x)y′(x) | dx.

Hence,

(15)
m

2

∫ b

a

y′2(x)dx ≤| λ |
∫ b

a

| y(x)y′(x) | dx.

Applying Opial’s inequality with nonlocal conditions (2.2) to the RHS of (15), we
obtain

(16)
m

2

∫ b

a

y′2(x)dx ≤| λ | b− a
π

∫ b

a

y′2(x)dx.

By canceling
∫ b
a
y′2(x)dx, we obtain (13). 2
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