DOI QR코드

DOI QR Code

Combination of Runx2 and BMP2 increases conversion of human ligamentum flavum cells into osteoblastic cells

  • Kim, Hyun-Nam (Department of Biochemistry and Cell Biology, CMRI) ;
  • Min, Woo-Kie (Department of Orthopaedic Surgery, School of Dentistry, Gangneung-Wonju National University) ;
  • Jeong, Jae-Hwan (Department of Biochemistry and Cell Biology, CMRI) ;
  • Kim, Seong-Gon (Department of Oral and Maxillofacial Surgery, School of Dentistry, Gangneung-Wonju National University) ;
  • Kim, Jae-Ryong (Department of Biochemistry and Molecular Biology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University) ;
  • Kim, Shin-Yoon (Department of Orthopaedic Surgery, School of Dentistry, Gangneung-Wonju National University) ;
  • Choi, Je-Yong (Department of Biochemistry and Cell Biology, CMRI) ;
  • Park, Byung-Chul (Department of Orthopaedic Surgery, School of Dentistry, Gangneung-Wonju National University)
  • Received : 2011.03.14
  • Accepted : 2011.03.21
  • Published : 2011.07.31

Abstract

The conversion of fibroblasts into osteoblasts requires the activation of key signaling pathways, including the BMP pathway. Although Runx2 is known to be a component of the BMP pathway, the combination of Runx2 and BMP2 has not yet been examined with respect to the conversion of fibroblasts into osteoblasts. Here, human ligamentum flavum (LF) fibroblast-like cells from six patients were tested for their conversion into osteoblasts using adenoviruses expressing Runx2 or BMP2. The forced expression of Runx2 or BMP2 in primary cultured LF cells resulted in a variety of proliferation and differentiation behaviors. Combined treatment of BMP2 plus Runx2 resulted in better osteoblastic differentiation than treatment with either component alone. These results indicate that the Runx2 and BMP2 pathways possess both common and independent target genes. Collectively, Runx2 plus BMP2 mediated efficient conversion of fibroblast-like LF cells into osteoblast-like cells, suggesting the possible use of these components for clinical applications such as spinal fusion.

Keywords

References

  1. Stein, G. S., Lian, J. B., van Wijnene, A. J., Stein, J. L., Montecino, M., Javed, A., Zaidi, S. K., Young, D. W., Choi, J. Y. and Pockwinse, S. M. (2004) Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23, 4315-4329. https://doi.org/10.1038/sj.onc.1207676
  2. Javed, A., Bae, J. S., Afzal, F., Gutierrez, S., Pratap, J., Zaidi, S. K., Lou, Y., van Wijnen, A. J., Stein, J. L., Stein, G. S. and Lian, J. B. (2008) Structural coupling of smad and Runx2 for execution of the BMP2 osteogenic signal. J. Biol. Chem. 283, 8412-8422. https://doi.org/10.1074/jbc.M705578200
  3. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R. T., Gao, Y. H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S. and Kishimoto, T. (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755-764. https://doi.org/10.1016/S0092-8674(00)80258-5
  4. Otto, F., Thornell, A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., Stamp, G. W., Beddington, R. S., Mundlos, S., Olsen, B. R., Selby, P. B. and Owen, M. J. (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765-771. https://doi.org/10.1016/S0092-8674(00)80259-7
  5. Choi, J. Y., Pratap, J., Javed, A., Zaidi, S. K., Xing, L., Balint, E., Dalamangas, S., Boyce, B., van Wijnen, A. J., Lian, J. B., Stein, J. L., Jones, S. N. and Stein, G. S. (2001) Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic development. Proc. Natl. Acad. Sci. U.S.A. 98, 8650-8655. https://doi.org/10.1073/pnas.151236498
  6. Lee, K. S., Kim, H. J., Li, Q. L., Chi, X. Z., Ueta, C., Komori, T., Wozney, J. M., Kim, E. G., Choi, J. Y., Ryoo, H. M. and Bae, S. C. (2000) Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between runx2 and smad5 induces osteoblast specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol. Cell. Biol. 20, 8783-8792. https://doi.org/10.1128/MCB.20.23.8783-8792.2000
  7. Urist, M. R. (1965) Bone: formation by autoinduction. Science 150, 893-899. https://doi.org/10.1126/science.150.3698.893
  8. Kingsley, D. M. (1994) What do BMPs do in mammals? Clues from the mouse short-ear mutation. Trends Genet. 10, 16-21. https://doi.org/10.1016/0168-9525(94)90014-0
  9. Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J. M., Fujisawa-Sehara, A. and Suda, T. (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J. Cell Biol. 127, 1755-1766. https://doi.org/10.1083/jcb.127.6.1755
  10. Ohba, S., Ikeda, T., Kugimiya, F., Yano, F., Lichtler, A. C., Nakamura, K., Takato, T., Kawaguch, H. and Chung, U. I. (2007) Identification of a potent combination of osteogenic genes for bone regeneration using embryonic stem (ES) cell-based sensor. FASEB J. 21, 1777-1787. https://doi.org/10.1096/fj.06-7571com
  11. Ryoo, H. M., Lee, M. H. and Kim, Y. J. (2006) Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene 366, 51-57. https://doi.org/10.1016/j.gene.2005.10.011
  12. Byers, B. A., Pavlath, G. K., Murphy, T. J., Karsenty, G. and Garcia, A. J. (2002) Cell type dependent upregulation of in vitro mineralization after overexpression of the osteoblast- specific transcription factor Runx2/Cbfa1. J. Bone Miner. Res. 17, 1931-1944. https://doi.org/10.1359/jbmr.2002.17.11.1931
  13. Byers, B. A. and Garcia, A. J. (2004) Exogenous Runx2 expression enhances in vitro osteoblastic differentiation and mineralization in primary bone marrow stromal cells. Tissue Eng. 10,1623-1632. https://doi.org/10.1089/ten.2004.10.1623
  14. Kim, Y. J., Kim, H. N., Park, E. K., Lee, B. H., Ryoo, H. M., Kim, S. Y., Kim, I. S., Stein, J. L., Lian, J. B., Stein, G. S., van Wijenen, A. J. and Choi, J. Y. (2006) The bone-related Zn finger transcription factor osterix promotes proliferation of mesenchymal cells. Gene 366, 145-151. https://doi.org/10.1016/j.gene.2005.08.021
  15. Galindo, M., Pratap, J., Young, D. W., Hovhannisyan, H., Im, H. J., Choi, J. Y., Lian, J. B., Stein, J. L., Stein, G. S. and van Wijnen, A. J. (2005) The bone-specific expression of Runx2 oscillates during the cell cycle to support a G1-related antiproliferative function in osteoblasts. J. Biol. Chem. 280, 20274-20285. https://doi.org/10.1074/jbc.M413665200
  16. Lee, M. H., Javed, A., Kim, H. J., Shin, H. I., Gutierrez, S., Choi, J. Y., Rosen, V., Stein, J. L., van Wijnen, A. J., Stein, G. S., Lian, J. B. and Ryoo, H. M. (1999) Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor beta1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation. J. Cell. Biochem. 73,114-125. https://doi.org/10.1002/(SICI)1097-4644(19990401)73:1<114::AID-JCB13>3.0.CO;2-M
  17. Drissi, H., Luc, Q., Shakoori, R., Chuva de Sousa Lopes, S., Choi, J. Y., Terry, A., Hu, M., Jones, S., Neil, J. C., Lian, J. B., Stein, J. L., van Wijnen, A. J. and Stein, G. S. (2000) Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. J. Cell Physiol. 184, 341-350. https://doi.org/10.1002/1097-4652(200009)184:3<341::AID-JCP8>3.0.CO;2-Z
  18. Komori, T. (2011) Signaling networks in RUNX2-Dependent bone development. J. Cell Biochem. 112, 750-755. https://doi.org/10.1002/jcb.22994
  19. Pratap, J., Galindo, M., Zaidi, S. K., Vradii, D., Bhat, B. M., Robinson, J. A., Choi, J. Y., Komori, T., Stein, J. L., Lian, J. B., Stein, G. S. and van Wijnen, A. J. (2003) Cell growth regulatory role of Runx2 during proliferative expansion of pre-osteoblasts. Cancer Res. 63, 5357-5362.
  20. Zaidi, S. K., Pande, S., Pratap, J., Gaur, T., Grigoriu, S., Ali, S. A., Stein, J. L., Lian, J. B., van Wijnen, A. J. and Stein, G. S. (2007) Runx2 deficiency and defective subnuclear targeting bypass senescence to promote immortalization and tumorigenic potential. Proc. Natl. Acad. Sci. U.S.A. 104, 19861-19866. https://doi.org/10.1073/pnas.0709650104
  21. Kilbey, A., Blyth, K., Wotton, S., Terry, A., Jenkins, A., Bell, M., Hanlon, L., Cameron, E. R. and Neil, J. C. (2007) Runx2 disruption promotes immortalization and confers resistance to oncogene-induced senescence in primary murine fibroblasts. Cancer Res. 67, 11263-11271. https://doi.org/10.1158/0008-5472.CAN-07-3016
  22. Teplyuk, N. M., Galindo, M., Teplyuk, V. I., Pratap, J., Young, D. W., Lapointe, D., Javed, A., Stein, J. L., Lian, J. B., Stein, G. S. and van Wijnen, A. J. (2008) Runx2 regulates G protein-coupled signaling pathways to control growth of osteoblast progenitors. J. Biol. Chem. 283, 27585-27597. https://doi.org/10.1074/jbc.M802453200
  23. Blyth, K., Vaillant, F., Hanlon, L., Mackay, N., Bell, M., Jenkins, A., Neil, J. C. and Cameron, E. R. (2006) Runx2 and MYC collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo. Cancer Res. 66, 2195-2201. https://doi.org/10.1158/0008-5472.CAN-05-3558
  24. Blyth, K., Cameron, E. R. and Neil, J. C. (2005) The Runx genes: gain or loss of function in cancer. Nat. Rev. Cancer 5, 376-387. https://doi.org/10.1038/nrc1607
  25. Specchia, N., Pagnotta, A., Gigante, A., Logroscino, G. and Toesca, A. (2001) Characterization of cultured human ligamentum flavum cells in lumbar spine stenosis. J. Orthop Res. 19, 294-300. https://doi.org/10.1016/S0736-0266(00)00026-7

Cited by

  1. Differential expression of the metastasis suppressor KAI1 in decidual cells and trophoblast giant cells at the feto-maternal interface vol.46, pp.10, 2013, https://doi.org/10.5483/BMBRep.2013.46.10.223
  2. Silica as a morphogenetically active inorganic polymer vol.1, pp.6, 2013, https://doi.org/10.1039/c3bm00001j
  3. X-ray radiation at low doses stimulates differentiation and mineralization of mouse calvarial osteoblasts vol.45, pp.10, 2012, https://doi.org/10.5483/BMBRep.2012.45.10.101
  4. DICAM inhibits angiogenesis via suppression of AKT and p38 MAP kinase signalling vol.98, pp.1, 2013, https://doi.org/10.1093/cvr/cvt019
  5. Hydroxyapatite and Collagen Combination-Coated Dental Implants Display Better Bone Formation in the Peri-Implant Area Than the Same Combination Plus Bone Morphogenetic Protein-2–Coated Implants, Hydroxyapatite Only Coated Implants, and Uncoated Implants vol.72, pp.1, 2014, https://doi.org/10.1016/j.joms.2013.08.031
  6. Synergistic effect of Wnt modulatory small molecules and an osteoinductive ceramic on C2C12 cell osteogenic differentiation vol.67, 2014, https://doi.org/10.1016/j.bone.2014.06.032
  7. Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress vol.39, pp.1, 2017, https://doi.org/10.3892/ijmm.2016.2803
  8. Reconstruction of radial bone defect using gelatin sponge and a BMP-2 combination graft vol.46, pp.6, 2013, https://doi.org/10.5483/BMBRep.2013.46.6.231
  9. Experimental Mouse Model of Lumbar Ligamentum Flavum Hypertrophy vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0169717
  10. Evaluating Osteogenic Potential of Ligamentum Flavum Cells Cultivated in Photoresponsive Hydrogel that Incorporates Bone Morphogenetic Protein-2 for Spinal Fusion vol.16, pp.10, 2015, https://doi.org/10.3390/ijms161023318