DOI QR코드

DOI QR Code

SPI 제어기를 이용한 IPMSM 드라이브의 효율최적화 제어

Efficiency Optimization Control of IPMSM Drive using SPI Controller

  • 고재섭 (순천대학교 전기제어공학과) ;
  • 정동화 (순천대학교 전기제어공학과)
  • 투고 : 2011.02.19
  • 심사 : 2011.06.10
  • 발행 : 2011.07.31

초록

This proposes an online loss minimization algorithm for series PI(SPI) based interior permanent magnet synchronous motor(IPMSM) drive to yield high efficiency and high dynamic performance over wide speed range. The loss minimization algorithm is developed based on the motor model. In order to minimize the controllable electrical losses of the motor and thereby maximize the operating efficiency, the d-axis armature current is controlled optimally according to the operating speed and load conditions. For vector control purpose, a SPI is used as a speed controller which enables the utilization of the reluctance torque to achieve high dynamic performance as well as to operate the motor over a wide speed range. Also, this paper proposes current control of model reference adaptive fuzzy controller(MFC), and estimation of speed using artificial neural network(ANN) controller. The proposed efficiency optimization control, SPI, MFC, ANN in this paper is applied to IPMSM drive system, the validity of this paper is proved by analyzing response characteristics in variety operating conditions.

키워드

참고문헌

  1. S. Yamamura, "AC motors for high performance applications," New York: Marcel Dekker, 1986.
  2. G. R. Slemon, "Electric machines and drives," Reading, MA: Addison-Wesley, pp. 503-551, 1992.
  3. A. Fransua and R. Magureanu, "Electric machines and drives systems, Bucharest, Hungary: Technical Press, 1984.
  4. R. D. Findlay, N. Stranges and D. K. Mackay, "Losses due to rotational flux in three phase induction motors," IEEE Trans. EC, vol. 9, no. 3, pp. 543-549, 1994. https://doi.org/10.1109/60.326474
  5. S. Lim and K. Nam, "Loss-minimising control scheme for induction motors," in Proc. Jul. 2004 Inst. Elect. Eng., vol. 151, no. 4, pp. 385-397, 2004. https://doi.org/10.1049/ip-epa:20040384
  6. F. Abrahamsen, F. Blaabjerg, J. K. Pedersen and P. B. Thoegersen, "Efficiency optimized control of meduium size induction motor drives," IEEE Trans. IA, vol. 37, no. 6, pp. 1761-1767, 2001. https://doi.org/10.1109/28.968189
  7. T. M. Jahns, G. B. Kliman and T. W. Neumann, "Interior permanent magnet synchronous motors for adjustable speed drives," in Proc. IEEE IAS Annu. Meeting, pp. 814-823, 1985. https://doi.org/10.1109/TIA.1986.4504786
  8. S. Morimoto, M. Sanada and Y. Takeda, "Wide speed operation of interior permanent magnet synchronous motors with high performance current regulator," IEEE Trans. IA, vol. 30, no. 4, pp. 920-926, 1994. https://doi.org/10.1109/28.297908
  9. T. Sebastian and G. R. Skemon, "Operating limits of inverter driven permanent magnet synchronous motor drives," IEEE IA, vol. 23, no. 2, pp. 327-333, 1987. https://doi.org/10.1109/TIA.1987.4504909
  10. S. D. Wee, M. H. Shin and D. S. Hyun, "Stator flux oriented control of induction motor considering iron loss," IEEE Trans. IE, vol. 48, no. 3, pp. 602-608, 2001. https://doi.org/10.1109/41.925587
  11. T. M. Jahns, "Flux weakening regime operation of an interior permanent magnet synchronous motor drive," IEEE Trans. IA, vol. 23, no. 4, pp. 681-689, 1987 https://doi.org/10.1109/TIA.1987.4504966
  12. C. Mademlis, J. Xypteras and N. Margaris, "Loss minimization in surface permanent magnet synchronous motor drives," IEEE Trans. on IE, vol. 47, no. 1, pp. 115-122, 2000. https://doi.org/10.1109/41.824133
  13. C. Mademlis and N. Margaris, "Loss minimization in vector-controlled interior permanent magnet synchronous motor drives," IEEE Trans. on IE, vol. 49, no. 6, pp. 1344-1347, 2002. https://doi.org/10.1109/TIE.2002.804990
  14. C. Cavallaro, A. O. D. Tommaso, R. Miceli, A. Raciti, G. R. Galluzzo and M. Trapanese, "Efficiency enhancement of permanent-magnet synchronous motor drives by online loss minimization approaches," IEEE Trans. on IE, vol. 52, no. 4, pp. 1153-1160, 2005. https://doi.org/10.1109/TIE.2005.851595
  15. C. Cavallaro, A. O. D. Tommaso, R. Miceli, A. Raciti, G. R. Galluzzo and M. Trapanese, "Analysis a DSP implementation and experimental validation of a loss minimization algorithm applied to permanent magnet synchronous motor drives," IECON '03. The 29th Annual Conference of the IEEE, vol. 1, pp. 312-317, 2003. https://doi.org/10.1109/IECON.2003.1279998
  16. Sergaki, S. Eleftheria, Georgilakis, S. Pavlos, Kladas, G. Antonios, Stavrakakis and S. George, "Fuzzy logic based online electromagnetic loss minimization of permanent magnet synchronous motor drives," 18th International Conference on ICEM 2008, pp. 1-7, 2008. https://doi.org/10.1109/ICELMACH.2008.4800113
  17. Y. Nakamura, T. Kudo, F. Ishibashi and S. Hibino, "High-efficiency drive due to power factor control of a permanent magnet synchronous motor," IEEE Trans., PE, vol. 10, pp. 247-253, 1995. https://doi.org/10.1109/63.372609
  18. R. S. Colby and D. W. Novotny, "Efficiency-optimizing permanent-magnet synchronous motor drive," IEEE Trans., IA, vol. 24, pp. 462-469, 1988. https://doi.org/10.1109/28.2897
  19. S. Morimoto, M. Sanada and Y. Takeda, "Effectsand compensation of magnetic saturation in flux-weakening controlled permanent magnet synchronous motor drives," IEEE Trans. IA, vol. 30, no. 6, pp. 1632-1637, 1994. https://doi.org/10.1109/TIA.1994.350318
  20. C. Mademlis and V. G. Agelidis, "On considering magnetic saturation with maximum torque to current control in interior permanent magnet synchronous motor drives," IEEE Trans. EC, vol. 16, no. 3, pp. 246-252, 2001. https://doi.org/10.1109/60.937204
  21. Md. Muminul Islam Clry and M. Nasir Uddin, "Development and implementation of a new adaptive intelligent speed controller for IPMSM drive," IEEE Trans. IA, vol. 45, no. 3, pp. 1106 - 1115, 2009. https://doi.org/10.1109/TIA.2009.2018918
  22. D. F. Chen, T. H. Liu and C. K. Hung, "Nonlinear adaptive backstepping controller backstepping controller design for a matrix-converter based PMSM control system," in Proc. IEEE IAS Annu. Meeting, vol. 1, pp. 673-678, 2003. https://doi.org/10.1109/IECON.2003.1280062
  23. K. Hwakim and M. J. Youn, "A nonlinear speed control for a PM synchronous motor using a simple disturbance estimation technique," IEEE Trans. IE, vol. 49, no. 1, pp. 524-534, 2002. https://doi.org/10.1109/TIE.2002.1005377
  24. M. Krstic I. Kaneelankopoilos and P. Kokotovic, "Nonlinear and adaptive control design," New York: Wiley, 1995.
  25. M. Tursini, F. Parasiliti and D. Zhang, "Real time gain tuning of PI controllers for high performance PMSM drives," IEEE Trans. IA, vol. 38, no. 4, pp. 1018-1026, 2002. https://doi.org/10.1109/TIA.2002.800564
  26. Z. Ibrahim and E. Levi, "A comparative analysis of fuzzy logic and PI speed control in high performance AC drives using experimental approach," IEEE Trans. IA, vol. 38, no. 5, pp. 1210-1218, 2002. https://doi.org/10.1109/TIA.2002.802993
  27. D. H. Chung, et al., "Maximum torque control of IPMSM drive with Multi-MFC," ICCAS2010, pp. 1242-1247, 2010.
  28. D. H. Chung, et al., "Development of HBPI Controller for High Performance Control of IPMSM Drive", pp. 368-372, ICPE'07, 2007. https://doi.org/10.1109/ICPE.2007.4692411
  29. D. H. Chung, et al., "Speed control of IPMSM drive using neural network PI controller," CEE'06, pp. 102, 2006.
  30. D. H. Chung, et al., "Maximum torque control of IPMSM drive with ALC-FNN controller," ICEE'06, pp. 101, 2006.
  31. D. H. Chung, et al., "Maximum torque control of IPMSM drive with hybrid artificial intelligent controller," Proceeding of ICMATE'06, Session B1, pp. 177-182, 2006.