References
- Broderick, N.A., K.F. Raffa and J. Handelsman. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103: 15196-15199. https://doi.org/10.1073/pnas.0604865103
- Chung, B.G., S.W. Kang and H.Y. Choo. 1997. Joint toxic action of bifenthrin and prothiofos mixture for the control of insecticideresistant diamondback moth, Plutella xylostella L. Kor. J. Appl. Entomol. 36: 105-110.
-
Dennis, E.A. 1997. The growing phospholipase
$A_2$ superfamily of signal transduction enzymes. Trends Biochem. Sci. 22: 1-2. https://doi.org/10.1016/S0968-0004(96)20031-3 - Gill, S.S., E.A. Cowles and P.V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636. https://doi.org/10.1146/annurev.en.37.010192.003151
- Hoffman, C., H. Vanderbruggen, H. Hofte, J. Van Rie, S. Jansens and H. Van Mellaert. 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85: 7844-7848. https://doi.org/10.1073/pnas.85.21.7844
- Hwang, B.G. 2002. Studies of resistance of pepper to phytophthora blight and its control. Res. Plant Dis. 8: 131-145. https://doi.org/10.5423/RPD.2002.8.3.131
- Jenkins, J.I. and D.H. Dean. 2000. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, vol. 22. eds. by K. Setlow. Plenum, New York.
- Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim. 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239: 241-248. https://doi.org/10.1016/j.femsle.2004.08.041
- Jung, S.C. and Y. Kim. 2006. Synergistic effect of Xenorhabdus nematophila K1 and Bacillus thuringiensis subsp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Biol. Control 39: 201-209. https://doi.org/10.1016/j.biocontrol.2006.07.002
- Kanost, M.R., H. Jiang and X. Yu. 2004. Innate immune responses of a lepidopteran insects, Manduca sexta. Immunol. Rev. 198: 97-105. https://doi.org/10.1111/j.0105-2896.2004.0121.x
- Kanost, M.R. and M.J. Gorman. 2008. Phenoloxidase in insect immunity. pp. 69-96. In Insect immunity, ed. by N.E. Beckage. Academic Press, San Diego, USA.
- Kennedy, R., and R. Collier. 2000. Pests and diseases of field vegetables. pp. 185-257. In Pest and disease management handbook, ed. by D.V. Alford. Blackwell Science, Oxford, UK.
- Kim, G.H., Y. S. Seo, J.H. Lee and K.Y. Cho. 1990. Development of fenvalerate resistance in the diamondback moth, Plutella xylostella Linne (Lepidoptera: Yponomeutidae) and its cross resistance. Kor. J. Appl. Entomol. 29: 194-200.
- Kim, M.H. and S.C. Kim. 1991. Bionomics of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) in southern region of Korea. Kor. J. Appl. Entomol. 30: 169-173.
- Kwon, S. and Y. Kim. 2008. Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 101: 36-41. https://doi.org/10.1603/0022-0493(2008)101[36:BAIEVO]2.0.CO;2
- Park, Y.S, M.J. Kim, G.H. Lee, W.S. Cheon, Y.G. Lee and Y. Kim. 2009. Inhibitory effects of an eicosanoid biosynthesis inhibitor, benzylideneacetone, against two spotted spider mite, Tetranychus urticae, and a bacterial wilt-causing pathogen, Ralstonia solanacearum. Kor. J. Pesti. Sci. 3: 185-189.
- Park, S.J., M.H. Jun, W.S. Cheon, J.A. Seo, Y.G. Lee and Y. Kim. 2010. Control effects of benzylideneacetone isolated from Xenorhabdus nematophila K1 on the diseases of red-pepper plants. Res. Plant Dis. 16: 170-175. https://doi.org/10.5423/RPD.2010.16.2.170
-
Radvanyi, F., L. Jordan, F. Russo-Marie and C. Bon. 1989. A sensitive and continuous fluorometric assay for phospholipase
$A_2$ using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem. 177: 103-109. https://doi.org/10.1016/0003-2697(89)90022-5 - SAS Institute, Inc. 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
- Seo, S. and Y. Kim. 2009. Two entomopathogenic bacteria, Xenorhabdus nematophila K1 and Photorhabdus temperata subsp. temperata ANU101 secrete factors enhancing Bt pathogenicity against the diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 38: 385-392. https://doi.org/10.5656/KSAE.2009.48.3.385
- Seo, S. and Y. Kim. 2010. Study on development of novel biopesticides using entomopathogenic bacterial culture broth of Xenorhabdus and Photorhabdus. Kor. J. Appl. Entomol. 49: 241-249. https://doi.org/10.5656/KSAE.2010.49.3.241
- Shrestha, S. and Y. Kim. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38: 99-112. https://doi.org/10.1016/j.ibmb.2007.09.013
-
Shrestha, S. and Y. Kim. 2009. Biochemical characteristics of immune-associated phospholipase
$A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47: 774-782. https://doi.org/10.1007/s12275-009-0145-3 - Stanley, D.W. 2000. Eicosanoids in Invertebrate Signal Transduction Systems. Princeton University Press, New Jersey, USA.
- Stanley, D.W. 2006. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51: 25-44. https://doi.org/10.1146/annurev.ento.51.110104.151021
- Stanley, D.W. and J.S. Miller. 2006. Eicosanoid actions in insect cellular immune functions. Entomol. Exp. Appl. 119:1-13. https://doi.org/10.1111/j.1570-7458.2006.00406.x
- Tabashnik, B.E. 1994. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39: 47-79. https://doi.org/10.1146/annurev.en.39.010194.000403
- Zhang, X., N.B. Griko, S.K. Corona and L.A. Bulla, Jr. 2008. Enhanced exocytosis of the receptor BT-R(1) induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B 149: 581-588. https://doi.org/10.1016/j.cbpb.2007.12.006
Cited by
- Inhibitory Effects of a Recombinant Viral Cystatin Protein on Insect Immune and Developmen vol.53, pp.4, 2014, https://doi.org/10.5656/KSAE.2014.09.0.041
- Comparative Analysis of Benzylideneacetone-derived Compounds on Insect Immunosuppressive and Antimicrobial Activities vol.51, pp.3, 2012, https://doi.org/10.5656/KSAE.2012.06.0.035