DOI QR코드

DOI QR Code

Structure-activity Analysis of Benzylideneacetone for Effective Control of Plant Pests

벤질리덴아세톤 화학구조 변이에 따른 생리활성 변화 분석 및 식물 병해충 방제 효과

  • Seo, Sam-Yeol (Department of Bioresource Sciences, Andong National University) ;
  • Jun, Mi-Hyun (Department of Bioresource Sciences, Andong National University) ;
  • Chun, Won-Su (Department of Bioresource Sciences, Andong National University) ;
  • Lee, Sung-Hong (Department of Applied Chemistry, Andong National University) ;
  • Seo, Ji-Ae (B&L agro) ;
  • Yi, Young-Keun (Department of Bioresource Sciences, Andong National University) ;
  • Hong, Yong-Pyo (Department of Applied Chemistry, Andong National University) ;
  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
  • 서삼열 (안동대학교 자연과학대학 생명자원과학과) ;
  • 전미현 (안동대학교 자연과학대학 생명자원과학과) ;
  • 천원수 (안동대학교 자연과학대학 생명자원과학과) ;
  • 이성홍 (안동대학교 자연과학대학 응용화학과) ;
  • 서지애 ((주)B&L agro) ;
  • 이영근 (안동대학교 자연과학대학 생명자원과학과) ;
  • 홍용표 (안동대학교 자연과학대학 응용화학과) ;
  • 김용균 (안동대학교 자연과학대학 생명자원과학과)
  • Received : 2011.03.22
  • Accepted : 2011.04.26
  • Published : 2011.06.30

Abstract

Benzylideneacetone (BZA) is a compound derived from culture broth of an entomopathogenic bacterium, Xenorhabdus nematophila (Xn). Its immunosuppressive activity is caused by its inhibitory activity against eicosanoid biosynthesis. This BZA is being developed as an additive to enhance control efficacy of other commercial microbial insecticides. This study was focused on the enhancement of the immunosuppressive activity of BZA by generating its chemical derivatives toward decrease of its hydrophobicity. Two hydroxylated BZA and one sugar-conjugated BZA were chemically synthesized. All derivatives had the inhibitory activities of BZA against phospholipase $A_2$ ($PLA_2$) and phenoloxidase (PO) of the diamondback moth, Plutella xylostella, but BZA was the most potent. Mixtures of any BZA derivative with Bacillus thuringiensis (Bt) significantly increased pathogenicity of Bt. BZA also inhibited colony growth of four plant pathogenic fungi. However, BZA derivatives (especially the sugar-conjugated BZA) lost the antifungal activity. These results indicated that BZA and its derivatives inhibited catalytic activities of two immune-associated enzymes ($PLA_2$ and PO) of P. xylostella and enhanced Bt pathogenicity. We suggest its use to control plant pathogenic fungi.

벤질리덴아세톤은 곤충병원세균인 Xenorhabdus nematophila의 배양액에서 유래된 물질이다. 벤질리덴아세톤은 아이코사노이드 생합성을 억제하여 곤충의 면역을 저하시키는 것으로 알려져 있으며, 이 물질을 미생물농약에 첨가하면 병원성의 제고 효과를 기대할 수 있다. 본 연구는 벤질리덴아세톤의 면역억제 능력을 제고시킬 목적으로 이 물질의 소수성을 낮추는 유도체를 화학 합성하였다. 수산기를 첨가한 두 가지 벤질리덴아세톤 유도체와 설탕이 부착된 벤질리덴아세톤 유도체가 각각 합성되었다. 이 유도체들은 모두 배추좀나방(Plutella xylostella)의 phospholipase $A_2$ ($PLA_2$)와 phenoloxidase (PO) 활성을 모두 억제하였으며, 이 가운데 벤질리덴아세톤이 가장 억제력이 높았다. 이러한 벤질리덴아세톤 유도체들을 각각 Bacillus thuringiensis (Bt) 생물농약과 혼합하면 미생물의 병원성을 증가시켰다. 벤질리덴아세톤은 또한 네 가지 식물병원성 진균의 성장을 억제시켰다. 그러나 이 물질의 유도체들(특히 설탕 중합체)의 병원균 성장 억제 능력은 일부 감소했다. 이러한 결과는 벤질리덴아세톤과 벤질리덴아세톤 유도체는 면역작용에 관여하는 $PLA_2$와 PO의 두 가지 효소 활성을 억제하며, 배추좀나방에 대한 Bt 병원성을 제고시켰으며, 식물병원성 진균에 대한 항균제로서의 개발 가능성을 제시하고 있다.

Keywords

References

  1. Broderick, N.A., K.F. Raffa and J. Handelsman. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103: 15196-15199. https://doi.org/10.1073/pnas.0604865103
  2. Chung, B.G., S.W. Kang and H.Y. Choo. 1997. Joint toxic action of bifenthrin and prothiofos mixture for the control of insecticideresistant diamondback moth, Plutella xylostella L. Kor. J. Appl. Entomol. 36: 105-110.
  3. Dennis, E.A. 1997. The growing phospholipase $A_2$ superfamily of signal transduction enzymes. Trends Biochem. Sci. 22: 1-2. https://doi.org/10.1016/S0968-0004(96)20031-3
  4. Gill, S.S., E.A. Cowles and P.V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636. https://doi.org/10.1146/annurev.en.37.010192.003151
  5. Hoffman, C., H. Vanderbruggen, H. Hofte, J. Van Rie, S. Jansens and H. Van Mellaert. 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85: 7844-7848. https://doi.org/10.1073/pnas.85.21.7844
  6. Hwang, B.G. 2002. Studies of resistance of pepper to phytophthora blight and its control. Res. Plant Dis. 8: 131-145. https://doi.org/10.5423/RPD.2002.8.3.131
  7. Jenkins, J.I. and D.H. Dean. 2000. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, vol. 22. eds. by K. Setlow. Plenum, New York.
  8. Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim. 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239: 241-248. https://doi.org/10.1016/j.femsle.2004.08.041
  9. Jung, S.C. and Y. Kim. 2006. Synergistic effect of Xenorhabdus nematophila K1 and Bacillus thuringiensis subsp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Biol. Control 39: 201-209. https://doi.org/10.1016/j.biocontrol.2006.07.002
  10. Kanost, M.R., H. Jiang and X. Yu. 2004. Innate immune responses of a lepidopteran insects, Manduca sexta. Immunol. Rev. 198: 97-105. https://doi.org/10.1111/j.0105-2896.2004.0121.x
  11. Kanost, M.R. and M.J. Gorman. 2008. Phenoloxidase in insect immunity. pp. 69-96. In Insect immunity, ed. by N.E. Beckage. Academic Press, San Diego, USA.
  12. Kennedy, R., and R. Collier. 2000. Pests and diseases of field vegetables. pp. 185-257. In Pest and disease management handbook, ed. by D.V. Alford. Blackwell Science, Oxford, UK.
  13. Kim, G.H., Y. S. Seo, J.H. Lee and K.Y. Cho. 1990. Development of fenvalerate resistance in the diamondback moth, Plutella xylostella Linne (Lepidoptera: Yponomeutidae) and its cross resistance. Kor. J. Appl. Entomol. 29: 194-200.
  14. Kim, M.H. and S.C. Kim. 1991. Bionomics of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) in southern region of Korea. Kor. J. Appl. Entomol. 30: 169-173.
  15. Kwon, S. and Y. Kim. 2008. Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 101: 36-41. https://doi.org/10.1603/0022-0493(2008)101[36:BAIEVO]2.0.CO;2
  16. Park, Y.S, M.J. Kim, G.H. Lee, W.S. Cheon, Y.G. Lee and Y. Kim. 2009. Inhibitory effects of an eicosanoid biosynthesis inhibitor, benzylideneacetone, against two spotted spider mite, Tetranychus urticae, and a bacterial wilt-causing pathogen, Ralstonia solanacearum. Kor. J. Pesti. Sci. 3: 185-189.
  17. Park, S.J., M.H. Jun, W.S. Cheon, J.A. Seo, Y.G. Lee and Y. Kim. 2010. Control effects of benzylideneacetone isolated from Xenorhabdus nematophila K1 on the diseases of red-pepper plants. Res. Plant Dis. 16: 170-175. https://doi.org/10.5423/RPD.2010.16.2.170
  18. Radvanyi, F., L. Jordan, F. Russo-Marie and C. Bon. 1989. A sensitive and continuous fluorometric assay for phospholipase $A_2$ using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem. 177: 103-109. https://doi.org/10.1016/0003-2697(89)90022-5
  19. SAS Institute, Inc. 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
  20. Seo, S. and Y. Kim. 2009. Two entomopathogenic bacteria, Xenorhabdus nematophila K1 and Photorhabdus temperata subsp. temperata ANU101 secrete factors enhancing Bt pathogenicity against the diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 38: 385-392. https://doi.org/10.5656/KSAE.2009.48.3.385
  21. Seo, S. and Y. Kim. 2010. Study on development of novel biopesticides using entomopathogenic bacterial culture broth of Xenorhabdus and Photorhabdus. Kor. J. Appl. Entomol. 49: 241-249. https://doi.org/10.5656/KSAE.2010.49.3.241
  22. Shrestha, S. and Y. Kim. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38: 99-112. https://doi.org/10.1016/j.ibmb.2007.09.013
  23. Shrestha, S. and Y. Kim. 2009. Biochemical characteristics of immune-associated phospholipase $A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47: 774-782. https://doi.org/10.1007/s12275-009-0145-3
  24. Stanley, D.W. 2000. Eicosanoids in Invertebrate Signal Transduction Systems. Princeton University Press, New Jersey, USA.
  25. Stanley, D.W. 2006. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51: 25-44. https://doi.org/10.1146/annurev.ento.51.110104.151021
  26. Stanley, D.W. and J.S. Miller. 2006. Eicosanoid actions in insect cellular immune functions. Entomol. Exp. Appl. 119:1-13. https://doi.org/10.1111/j.1570-7458.2006.00406.x
  27. Tabashnik, B.E. 1994. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39: 47-79. https://doi.org/10.1146/annurev.en.39.010194.000403
  28. Zhang, X., N.B. Griko, S.K. Corona and L.A. Bulla, Jr. 2008. Enhanced exocytosis of the receptor BT-R(1) induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B 149: 581-588. https://doi.org/10.1016/j.cbpb.2007.12.006

Cited by

  1. Inhibitory Effects of a Recombinant Viral Cystatin Protein on Insect Immune and Developmen vol.53, pp.4, 2014, https://doi.org/10.5656/KSAE.2014.09.0.041
  2. Comparative Analysis of Benzylideneacetone-derived Compounds on Insect Immunosuppressive and Antimicrobial Activities vol.51, pp.3, 2012, https://doi.org/10.5656/KSAE.2012.06.0.035