DOI QR코드

DOI QR Code

Inverse Heat Transfer Analysis Using Monte Carlo Method in Gas-Filled Micro-Domains Enclosed by Parallel Plates

몬테카를로 방법을 이용한 기체로 채워진 평판 사이의 마이크로 역열전달 해석

  • Kim, Sun-Kyoung (Dept. of Product Design Manufacturing Engineering, Seoul National University of Science and Technology)
  • 김선경 (서울과학기술대학교 제품설계금형공학과)
  • Received : 2010.05.19
  • Accepted : 2011.04.13
  • Published : 2011.07.01

Abstract

This study proposes an inverse method for estimating the boundary temperature in a gas-filled, onedimensional parallel domain enclosed by parallel plates. The distance between the plates is considered submicron to one mm. In the current method, it is assumed that the conditions of both heat flux and temperature are simultaneously applicable to one boundary, while no conditions are applicable to the other boundary The temperature on one of the boundaries should be inversely determined from the known temperature and heat flux on the other boundary. This study proposes a procedure for estimating the unknown boundary temperature through Monte Carlo simulation. Both the forward and inverse problems employ the Monte Carlo approach. The forward (direct) problem is solved by using the direct simulation Monte Carlo while the inverse solution is obtained by the simulated annealing.

이 연구는 기체로 채워진 1 차원 평행 공간에서 경계 온도를 추정하는 역해석 기법을 제안한다. 평판사이의 거리는 마이크론 이하의 크기부터 1 밀리미터 까지를 고려한다. 한쪽 경계에서는 온도와 열유속이 동시에 활용 가능하지만 다른 경계에서는 아무런 측정이 불가한 상황을 가정한다. 한쪽 경계의 온도는 알려진 열유속과 온도를 이용하여 거꾸로 결정하여야 한다. 이 연구는 이 온도를 몬테카를로 모사를 통하여 산정하는 절차를 제안하였는데 직접 문제는 DSMC 를 사용하고 역문제는 모사 어닐링을 이용한다.

Keywords

References

  1. Ramm, A. G., 2005, Inverse Problems, Springer, New York.
  2. Mosegaard, K. and Tarantola, A., 1995, "Monte-Carlo Sampling of Solutions to Inverse Problems," Journal of Geophysical Research-Solid Earth, Vol. 100, pp. 12431-12447. https://doi.org/10.1029/94JB03097
  3. Tikhonov, A. N. and Arsenin, V. I. A., 1977, Solutions of ill-posed problems, Winstonm, New York.
  4. Alifanov, O. M., 1994, Inverse Heat Transfer Problems, Springer-Verlag, New York.
  5. Beck, J. V., Blackwell, B. and HajiSheikh, A., 1996, "Comparison of Some Inverse Heat Conduction Methods Using Experimental Data," International Journal of Heat and Mass Transfer, Vol. 39, No. 17, pp. 3649-3657. https://doi.org/10.1016/0017-9310(96)00034-8
  6. Liu, F. B. and Ozisik, M. N., 1996, "Inverse Analysis of Transient Turbulent Forced Convection Inside Parallel-Plate Ducts," International Journal of Heat and Mass Transfer, Vol. 39, No.12, pp. 2615-2618. https://doi.org/10.1016/0017-9310(96)84824-1
  7. Kim, S. K. and Daniel, I. M., 2004, "Gradient Method For Inverse Heat Conduction Problem In Nanoscale," International Journal for Numerical Methods in Engineering, Vol. 60, No.3, pp. 2165-2181. https://doi.org/10.1002/nme.1041
  8. Kim, S. K. and Daniel, I. M., 2003, "Solution To Inverse Heat Conduction Problem In Nanoscale Using Sequential Method," Numerical Heat Transfer Part BFundamentals, Vol. 44, No. 5, pp. 439-456. https://doi.org/10.1080/716100491
  9. Bird, G. A., 1994, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press, Oxford.
  10. Wang, M. R. and Li, Z. X., 2004, "Simulations For Gas Flows In Microgeometries Using The Direct Simulation Monte Carlo Method," International Journal of Heat and Fluid Flow, Vol. 25, No.6, pp. 975-985. https://doi.org/10.1016/j.ijheatfluidflow.2004.02.024
  11. Park, J. H. and Baek, S. W., 2004, "Investigation of Influence of Thermal Accommodation on Oscillating Micro-Flow," International Journal of Heat and Mass Transfer, Vol. 47, No. 6-7, pp. 1313-1323. https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.028
  12. Yan, F. and Farouk, B. , 2002, "Computations of Low Pressure Fluid Flow and Heat Transfer In Ducts Using The Direct Simulation Monte Carlo Method," Journal of Heat Transfer-Transactions of the ASME, Vol. 124, No.4, pp. 609-616. https://doi.org/10.1115/1.1458018
  13. Fang, Y. C. and Liou, W. W., 2002, "Computations of The Flow and Heat Transfer In Microdevices Using DSMC With Implicit Boundary Conditions," Journal of Heat Transfer-Transactions of the ASME, Vol. 124, No.2, pp. 338-345. https://doi.org/10.1115/1.1447933
  14. Hadjiconstantinou, N.G. and O. Simek, Constantwall-temperature Nusselt number in micro and nanochannels, Journal of Heat Transfer-Transactions of the ASME, 2002. 124(2): pp. 356-364. https://doi.org/10.1115/1.1447931
  15. Ju, Y. S., 2000, "Thermal Conduction and Viscous Heating In Microscale Couette Flows," Journal of Heat Transfer-Transactions of The ASME, Vol. 122, No.4, pp. 817-818. https://doi.org/10.1115/1.1315595
  16. Mosegaard, K. and Sambridge, M., 2002, "Monte Carlo Analysis of Inverse Problems," Inverse Problems, Vol. 18, No. 3, pp. R29-R54. https://doi.org/10.1088/0266-5611/18/3/201
  17. Haji-Sheikh, A. and Howell, J. R., 2006, Monte Carlo Methods, in Handbook of Numerical Heat Transfer, 2nd Edition, ed. by Minkowycz, W. J., et al., Wiley, pp. 249-296.
  18. Haji-Sheikh, A. and Buckingham, F. P., 1993, "Multidimensional Inverse Heat Conduction Using The Monte Carlo Method," Journal of Heat Transfer-Transactions of the ASME, 1993, Vol. 115, No.1, pp. 26-33. https://doi.org/10.1115/1.2910662
  19. Oran, E. S., Oh, C. K. and Cybyk, B. Z., 1998, "Direct Simulation Monte Carlo: Recent Advances and Applications," Annual Review of Fluid Mechanics, Vol. 30, pp. 403-441. https://doi.org/10.1146/annurev.fluid.30.1.403
  20. Kirkpatrick, S., Gelatt, C. D. G. Jr., and Vecchi, M. P., 1983, "Optimization by Simulated Annealing," Science, Vol. 220, No.4598, pp. 671-680. https://doi.org/10.1126/science.220.4598.671
  21. Hughes, B. D., 1996, Random Walks and Random Environments, Oxford University Press, Oxford.