DOI QR코드

DOI QR Code

TOPSIS-Based Multi-Objective Shape Optimization for a CRT Funnel

TOPSIS 를 적용한 CRT 후면유리의 다중목적 형상최적설계

  • 이광기 (브이피 코리아) ;
  • 한정우 (한국기계연구원 시스템엔지니어링연구본부) ;
  • 한승호 (동아대학교 기계공학과)
  • Received : 2010.12.10
  • Accepted : 2011.04.13
  • Published : 2011.07.01

Abstract

The technique for order preference by similarity to ideal solution (TOPSIS) is regarded as a classical method of multiple attribute decision making (MADM), often used to solve various decision-making or selection problems. It is based on the concept that the chosen alternative should have the shortest distance from the positive ideal solution and the farthest distance from the negative ideal solution. The TOPSIS can be applied to a design process for carrying out multi-objective shape optimization wherein the best and worst alternatives are to be decided. In this paper, multi-objective shape optimization using the TOPSIS and Rational Bezier curve was applied to the funnel of a cathode-ray tube (CRT). In order to minimize the weight and first principal stress, a new multi-objective shape optimization methodology is proposed, wherein the relative-closeness coefficients of the TOPSIS are defined as the performance indices of a multi-objective function and evaluated by response surface models. This methodology enables the designer to decide on the best solution from a number of design specification groups by examining the various conflicts between the weight and the first principal stress.

TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)는 상충되는 다수의 속성이 존재하는 상황에서 의사결정이 요구되는 다속성 의사결정법(Multi Attribute Decision Making) 중 하나이다. 이는 선택된 대체안이 최선의 이상적 대체안으로부터 가장 가까운 거리에 위치해야 하고, 동시에 부정적으로 이상적인 대체안으로부터는 가장 멀리 위치해야 한다는 논리에 입각한 의사결정 기법이다. TOPSIS 는 최소화와 최대화가 공존하는 다목적함수 형상 최적설계에 적용이 가능하다. 본 연구에서는 TOPSIS 와 베지어 곡선(Rational Bezier Curve)을 적용하여 CRT(Cathode Ray Tubes) 후면유리의 다중목적 형상최적설계를 수행하였다. 무게와 1 차 주응력의 두 가지 다중목적 함수를 최적화하기 위하여, 다중목적 함수의 성능지표를 TOPSIS 의 상대적 근접도로 정의하고 이를 반응표면모델로 구성하여 다중목적 형상최적설계가 가능한 방법론을 제안하였다. 이를 통해 하나의 최적해가 아닌 최적해의 군이 선정되어, 무게와 주응력 최적해의 모순관계를 확인하면서 다양한 설계요구 스펙을 만족시켜줄 수 있는 방안을 설계자가 스스로 선택하도록 하였다.

Keywords

References

  1. Lee, K. K. and Han, S. H., 2010, "Development of Computational Orthogonal Array Based Fatigue Life Prediction Model for Shape Optimization of Turbine Blade," Transaction of KSME(A), Vol. 34, No. 5, pp. 611-617. https://doi.org/10.3795/KSME-A.2010.34.5.611
  2. Lee, K. K. and Han, S. H., 2009, "Six Sigma Robust Design for Railway Vehicle Suspension," Transaction of KSME(A), Vol. 33, No. 10, pp. 1132-1138. https://doi.org/10.3795/KSME-A.2009.33.10.1132
  3. Baek, S. H., Cho, S. S. and Joo, W. S., 2009, "Response Surface Approximation for Fatigue Life Prediction and Its Application to Multi-Criteria Optimization with a Priori Preference Information," Transaction of KSME(A), Vol. 33, No. 2, pp. 114-126. https://doi.org/10.3795/KSME-A.2009.33.2.114
  4. Yu, Y. G. and Kwak, B. M., 2003, "Development of a CAD-Based General Purpose Optimal Design and Its Application to Structural Shape for Fatigue Life," Annual Fall Conferences of KSME, pp. 1340-1345.
  5. Yu, J. and Ishii, K., 1993, "Robust Optimization Method for Systems with Significant Nonlinear Effects," Advances in Design Automation, DE-vol., 65-1, ASME, pp. 371-378.
  6. Kim, Y. H., Seo, J. H., Cho, Y. W. and Park, M. K., 2005, "A Case Study of MADM using Taguchi Techniques and LAM," Annual Fall Conferences for Korea Safety Management & Science, pp. 399-449
  7. Hwang C. L. and Yoon K., 1981, Multiple Attribute Decision Making: Methods and Applications, Springer Verlag.
  8. Li, D. F., 2010, "TOPSIS-based Nonlinear-Programming Methodology for Multiattribute Decision Making with Interval-Valued Intuitionistic Fuzzy Sets," IEEE Transactions on Fuzzy Systems, Vol. 18, No. 2, pp. 299-311. https://doi.org/10.1109/TFUZZ.2010.2041009
  9. Mahdavi, I., Mahdavi-Amiri, N., Heidarzade, A. and Nourifar, R., 2008, "Designing a Model of Fuzzy TOPSIS in Multiple Criteria Decision Making," Applied Mathematics and Computation, Vol. 206, pp. 607-617. https://doi.org/10.1016/j.amc.2008.05.047
  10. Kim, J. R. and Kim, G. T., 1997, "A Supplier Selection Method using the TOPSIS Techniques," Journal of Korean Operations Research and Management Science, Vol. 14, No. 2, pp. 1-17.
  11. Myers, Montgomery, 1995, Response Surface Methodology - Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New York.
  12. Ha, K. D., Shin, S. C., Kim, D. N., Lee, K. H. and Kim, J. H., 2006, "Development of a 32-in. Slim CRT with $125^{\circ}$ Deflection," Journal of the SID, Vol. 22, No.1.
  13. Kim, D. S., Jang, T., Shin, H. and Park, J. Y., 2001, "Rational Bezier Form of Hodographs of Rational Bezier Curves and Surfaces," Computer-Aided Design, Vol. 33, pp. 321-330. https://doi.org/10.1016/S0010-4485(00)00091-9
  14. Chakladar, N. D. and Charaborty, S., 2008, "A Combined TOPSIS-AHP-Method-Based Approach for Non-Traditional Machining Process Selection," Proc. IMechE Vol. 222, PartB. pp. 196-201.
  15. ANSYS Inc., 2009, ANSYS User's Guide ver. 11.

Cited by

  1. Optimization process for concept design of tactical missiles by using pareto front and TOPSIS vol.15, pp.7, 2014, https://doi.org/10.1007/s12541-014-0478-7
  2. Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis vol.38, pp.6, 2014, https://doi.org/10.3795/KSME-B.2014.38.6.547