DOI QR코드

DOI QR Code

A431 피부암세포의 EGFR kinase 신호체계에 선택적으로 작용하는 새로운 퀴나졸린계 억제제

Novel Quinazoline Derivatives Targeting on EGFR Kinase Mediated Signal Pathway in A431 Human Epidermoid Carcinoma Cells

  • 정철우 (부경대학교 자연과학대학 미생물학과) ;
  • 손병화 (부경대학교 자연과학대학 화학과) ;
  • 하재두 (한국화학연구원) ;
  • 김군도 (부경대학교 자연과학대학 미생물학과)
  • Jeong, Chul-Woo (Department of Microbiology, College of Natural Sciences, Pukyung National University) ;
  • Son, Byeng-Wha (Department of Chemistry, College of Natural Sciences, Pukyung National University) ;
  • Ha, Jae-Du (Korea Research Institute of Chemical Technology) ;
  • Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyung National University)
  • 투고 : 2011.03.15
  • 심사 : 2011.03.24
  • 발행 : 2011.03.30

초록

EGFR kinase의 활성을 억제할 수 있는 억제제는 암뿐만이 아니라 성장성 질환에도 효과적인 치료제가 될 수 있다. 본 연구는 새로운 퀴나졸린계 물질인 화합물 63013과 63033의 EGFR kinase 활성억제 효과를 분석하였다. 이들 물질들은 기존의 디알콕시퀴나졸린의 용해성을 증가시키기 위하여 [1,4]-다이옥시노 퀴나졸린 구조를 가지며 알콕시 곁사슬로 연결되어있다. 화합물 63013과 63033은 A431 인간 피부암세포에서 EGF에의해 유도되는 EGFR의 kinase 활성을 저해, 세포 내에서 EGFR 신호체계에 관여하는 MEK1/2, MAPK p44/42, AKT, STAT3과 같은 하위 분자들의 활성저해 효과를 유도하였다. 이러한 활성저해 효과는 현재 상용화되어 있는 Gefitinib (Iressa$^{(R)}$)와의 비교연구에서 화합물 63013과 63033이 보다 더 낮은 처리 농도에서 EGFR kinase의 활성을 저해하며 암세포의 성장을 억제함을 관찰 할 수 있었다. 따라서 본 연구는 이들 신규 물질들의 EGFR-연관 질환에 대한 EGFR kinase 선택적 억제제로서의 이용 가능성을 제시하고 있다.

Inhibitors of EGFR (epidermal growth factor receptor) kinase activity may prove useful to therapeutically intervene in cancer and to treat other proliferative diseases. In this study, we investigated the inhibitive effects of two compounds named 63013 and 63033 possess a [1,4]-dioxino quinazoline structure that links the alkoxy side chains together and their structural characteristics are considered to allow better solubility than the dialkoxyquinazoline derivatives. The EGFR kinase activities of A431 human epidermoid carcinoma cells, stimulated by EGF were inhibited by treatment with 63013 and 63033 in a dose-dependent manner respectively. Consistent with the compound-mediated EGFR kinase suppression, the major EGF-related downstream target molecules, such as MEK1/2, MAPK p44/42, AKT and STAT3, were also suppressed by both compounds. Interestingly, both compounds led to cell growth inhibition at a lower concentration than that of Gefitinib (Iressa$^{(R)}$). Collectively, our study showed that both compounds may have good therapeutic potential as an EGFR kinase specific inhibitor to treat EGFR-related diseases.

키워드

참고문헌

  1. Arteaga, C. L. 2002. Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist 7, 31-39. https://doi.org/10.1634/theoncologist.7-suppl_4-31
  2. Berclaz, G., H. J. Altermatt, V. Rohrbach, A. Siragusa, E. Dreher, and P. D. Smith. 2001. EGFR dependent expression of STAT3 (but not STAT1) in breast cancer. Int. J. Oncol. 19, 1155-1160.
  3. Bill, H. M., B. Knudsen, S. L. Moores, S. K. Muthuswamy, V. R. Rao, J. S. Brugge, and C. K. Miranti. 2004. Epidermal growth factor receptor-dependent regulation of integrin-mediated signaling and cell cycle entry in epithelial cells. Mol. Cell Biol. 24, 8586-8599. https://doi.org/10.1128/MCB.24.19.8586-8599.2004
  4. Carpenter, G., and S. Cohen. 1990. Epidermal growth factor. J. Biol. Chem. 265, 7709-7712.
  5. Casalini, P., M. V. Iorio, E. Galmozzi, and S. Menard. 2004. Role of HER receptors family in development and differentiation. J. Cell Physiol. 200, 343-350. https://doi.org/10.1002/jcp.20007
  6. De Luca, A., S. Pignata, A. Casamassimi, A. D'Antonio, C. Gridelli, A. Rossi, F. Cremona, V. Parisi, A. De Matteis, and N. Normanno. 2000. Detection of circulating tumor cells in carcinoma patients by a novel epidermal growth factor receptor reverse transcription-PCR assay. Clin. Cancer Res. 6, 1439-1444.
  7. Ha, J. D., S. K. Kang, K. D. Kim, J. K. Choi, J. Y. Kong, and C. H. Ahn. 2005. Design and synthesis of novel epidermal growth factor receptor kinase inhibitors. Bull. Korean Chem. Soc. 26, 959-965. https://doi.org/10.5012/bkcs.2005.26.6.959
  8. Hamid, O. 2004. Emerging treatment in oncology: focus on tyrosine kinase (erbB) receptor inhibitors. J. Am. Pharm. Assoc. 44, 52-58. https://doi.org/10.1331/154434504322713237
  9. Herbst, R. S. 2004. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys. 59, 21-26. https://doi.org/10.1016/j.ijrobp.2003.10.027
  10. Klapper, L., H. Waterman, M. Sela, and Y. Yarden. 2000. Tumor-inhibitory antibodies to HER-2/ErbB-2 may act by recruiting c-Cbl and enhancing ubiquitination of HER-2. Cancer Res. 60, 3384-3388.
  11. Olayioye, M. A., R. M. Neve, H. A. Lane, and N. Hynes. 2000. The ErbB signaling network: Receptor heterodimerization in development and cancer. EMBO J. 19, 3159-3167. https://doi.org/10.1093/emboj/19.13.3159
  12. Ranson, M., L. A. Hammond, D. Ferry, M. Kris, A. Tullo, P. I. Murray, V. Miller, S. Averbuch, J. Ochs, C. Morris, A. Feyereislova, H. Swaisland, and E. K. Rowinsky. 2002. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase trial. J. Clin. Oncol. 20, 2240-2250. https://doi.org/10.1200/JCO.2002.10.112
  13. Yarden, Y. and M. Sliwkowski. 2001. Untangling the ErbB signaling network. Nat. Rev. Mol. Cell Biol. 2, 127-137. https://doi.org/10.1038/35052073
  14. Sedlacek, H. H. 2000. Kinase inhibitors in cancer therapy. A look ahead. Drugs 59, 435-476. https://doi.org/10.2165/00003495-200059030-00004
  15. Woodburn, J. R. 1999. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol. Ther. 82, 241-250. https://doi.org/10.1016/S0163-7258(98)00045-X