DOI QR코드

DOI QR Code

A Study on Empirical Method Analysis of Impervious Surface Using KOMPSAT-2 Image

KOMPSAT-2 위성영상을 이용한 불투수지도작성 방법에 관한 실증연구

  • Bae, Da-Hye (Department of Urban Engineering, Chungbuk National University) ;
  • Lee, Jae-Yil (Department of Urban Engineering, Chungbuk National University) ;
  • Ko, Chang-Hwan (Department of Urban Engineering, Chungbuk National University) ;
  • Ha, Sung-Ryong (Department of Urban Engineering, Chungbuk National University)
  • Received : 2011.09.07
  • Accepted : 2011.10.14
  • Published : 2011.10.31

Abstract

Impervious surface affects urban climate, flood, and water pollution and has important role as basic data for urban planning and environmental and resources management uses. With a high paved rate, increased quantity of the outflown water and brings urban flooding during a heavy rain. Moreover, these non-point source pollution is getting increased the water pollution. In this regard, it is definitely important to research and keep monitoring the current situation of paved surface, which influences urban ecosystem, disaster and pollution. In this study, we suggest a method to utilize high resolution satellite image data for efficient survey on the current condition of paved surface. We analysed the paved surface condition of Dae-jeon metropolitan city area using KOMPSAT-2 image and validate its practicalness and limitation of this method.

Keywords

References

  1. 구자용, 2007, 고해상도 위성영상을 이용한 토지피 복도 제작기법 연구, 지리학연구회, 41(1), 83-94.
  2. 김선화 외, 2010, 한반도 토지피복도 제작을 위한 다시기 Landsat ETM 영상의 정합방법, 대한원격탐사학회, 26(2), 87-98. https://doi.org/10.7780/kjrs.2010.26.2.87
  3. 김성훈 외, 2007, Landsat 7 ETM+ 영상을 이용한 안성지역의 불투수도 추정, 대한원격탐사학회, 23(6), 529-536. https://doi.org/10.7780/kjrs.2007.23.6.529
  4. 김찬수 외, 2011, 다중시기 위성영상과 토지 통계자 료를 이용한 토지피복변화 예측 : 천안시, 아산시를 사례로, 한국지형학회지, 18(1), 41-56.
  5. 사공호상, 2003, IKONOS 위성영상을 이용한 불투 수지표면 분석방법에 관한 실증연구, 한국GIS학회, 11(4), 509-518.
  6. 엄정섭, 2004, 도시의 불투수면 총량규제에서 원격 탐사와 GIS의 활용, 한국환경영향평가학회, 13(5), 263-276.
  7. 임혜영 외, 2005, 고해상도 위성영상의 효율적 지형분류기법 연구, 지형공간정보학회지, 13(3), 33-40.
  8. 조홍래 외, 2005, 분광혼합분석 기법을 이용한 탄 천유역 불투수율 평가, 대한원격탐사학회지, 21(6), 457-468. https://doi.org/10.7780/kjrs.2005.21.6.457
  9. Baofeng Guo et al., 2008, A fast separabilitybased feature-selection method for highdimensional remotely sensed image classification, Pattern Recognition, 41, 1670-1679.
  10. Changshan Wu et al., 2003, Estimating impervious surface distribution by spectral mixture analysis, Remote Sensing of Environment, 84, 493-505. https://doi.org/10.1016/S0034-4257(02)00136-0
  11. Ruvimbo Gamanya et al., 2007, An automated satellite image classification design using object-oriented segmentation algorithms: A move towards standardization, Expert Systems with Applications 32, 616-624. https://doi.org/10.1016/j.eswa.2006.01.055
  12. Zhag Rongqun et al., 2011, Study of land cover classification based on knowledge rules using high-resolution remote sensing images, Expert Systems with Applications 38, 3647-3652. https://doi.org/10.1016/j.eswa.2010.09.019