DOI QR코드

DOI QR Code

Climate Data Qualification for Water Quality Impact Assessment

수질영향평가의 신뢰수준 향상을 위한 기상자료의 검정

  • Lee, Khil-Ha (Department of Civil Engineering, Daegu University) ;
  • Cho, Hongyeon (Marine Environment & Conservation Research Department, Korea Ocean R&D Institute)
  • 이길하 (대구대학교 토목공학과) ;
  • 조홍연 (한국해영연구원 해양환경보전연구부)
  • Received : 2011.02.07
  • Accepted : 2011.07.13
  • Published : 2011.10.31

Abstract

This study is focused on a climate data integrity to improve water quality assessment due to the social development projects. The study is in an attempt to calculate both extreme ranges of weather data measurements and partly provide means to assess qualification of data which fall within the extremes at the 23 meteorological weather stations. Generally speaking, maximum temperature, minimum temperature, relative humidity, dew point temperature are in the range of reasonable accuracy. However, there found some outliers of the brightness sunshine hours in Cheonan station. Also some years in Gwangju, Seoul, Wonju, Busan, and Jeju never reach to their upper limit and perhaps the calibration of the equipment is doubtful. The users need to take cautions in using the brightness sunshine hour data in preparation of water resources planning and management by estimating evapotranspiration and river discharge, and/or growth rate of the algae (phytoplankton).

Keywords

References

  1. 김도희, 2007. 건기와 우기시 화원면 주변 해역의 수질비교, 한국해양환경공학회지, 10(4), 193-200.
  2. 박종윤, 이미선, 이용준, 김성준, 2008. SWAT 모형을 이용한 미래 토지이용변화가 수문-수질에 미치는 영향분석, 대한토목학회논문집, 28(2B), 187-197.
  3. 양해근, 2007. 기후변화에 따른 유역의 물수지 변화, 대한지리학회지, 42(3), 405-420.
  4. 윤진일, 조경숙, 황헌, 박은우, 조성인, 1998. 표준 기상자료에 의한 벼 군락내 기온, 습도 및 결로 추정, 한국기상학회지, 34(2), 216-221.
  5. 이관호, 심광열, 2010. 국내 주요도시의 일조시간데이터를 이용한 시간당 전일사량 산출 및 분석, 한국태양에너지학회 논문집, 30(2), 16-21.
  6. 이변우, 김병찬, 명을재, 1991. 종관(綜觀)기상자료에 의한 순복사량 추정, 한국작물학회지, 36(3), 204-208.
  7. Allen, R. G., 1996. Assessing integrity of weather data for reference evapotranspiration estimation, J. of Irrigation and Drainage Engineering, ASCE, 122(2), 97-106. https://doi.org/10.1061/(ASCE)0733-9437(1996)122:2(97)
  8. Allen, R. G., 1997. Self-calibrating method for estimating solar radiation from air temperature, J. of Hydrologic Engineering, ASCE, 2(2), 56-67. https://doi.org/10.1061/(ASCE)1084-0699(1997)2:2(56)
  9. Allen, R. G., Trezza, R. and Tasumi, M., 2006. Analytical integrated functions for daily solar radiation on slopes, Agricultural and Forest Meteorology, 139, 55-73. https://doi.org/10.1016/j.agrformet.2006.05.012
  10. Atkinson, A. C., 1985. Plots, Transformations, and Regression, An introduction to graphical methods of diagnostic regression analysis, Clarendon Press.
  11. CIMIS, 1988. California irrigation management and information system quality control criteria, Department of Water Resources, Water Conservation Office, Sacramento, California, USA
  12. Hargreaves, G. H. and Allen, R. G., 2003. History and Evaluation of Hargreaves Evapotranspiration, Journal of Irrigation and Drainage Engineering - ASCE, 129(1), 53-63 https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)
  13. Hargreaves, G. H. and Samani, Z. A., 1985. Reference crop evapotranspiration from temperature, Applied Engineering in Agriculture, 1(2), 96-99 https://doi.org/10.13031/2013.26773
  14. Irmak, S., Allen, R. G., and Whitty, E. B., 2003. Daily grass and alfalfa-reference- Evapotranspiration calculations as part of the ASCE standardization effort, Journal of Irrigation and Drainage Engineering - ASCE, 129(5), 360-370 https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(360)
  15. Lee, K., 2010, Constructing a non-linear relationship between the incoming solar radiation and bright sunshine duration, International Journal of Climatology, 30, 1884-1892.
  16. Lee, K., 2009. Predicting Incoming Solar Radiation and Its Application to Radiation-based Equation for Estimating Reference Evapotranspiration, J. Irrigation and Drainage Engineering - ASCE, 135(5), 609-619. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000062
  17. Martin, J.L. and McCutcheon, S.C., 1999. Hydrodynamics and Transport for Water Quality Modeling, Lewis Publishers.
  18. Martinez, W.L. and Martinez, A.R., 2005. Exploratory Data Analysis with $MATLAB^{(R)}$, Computer Science and Data Analysis Series, Chapman & Hall/CRC
  19. Meek, D.W. and Hatfield, J.L., 1994. Data quality checking for single station meoteorological databases, Agricultural and Forest Meteorology, 69, 85-109. https://doi.org/10.1016/0168-1923(94)90083-3
  20. Morid, S., Gosain, A.K. and Keshari, A.K., 2002. Solar Radiation Estimation using Temperated-based, Stochastic and Artificial Neural Networks Approaches, Nordic Hydrology, 33(4), 291-304.
  21. Snoeyink, V.L. and Jenkins, D., 1980. Water Chemistry, John-Wiley & Sons.
  22. Taylor, F.W., 2005. Elementary Climate Physics, Oxford Univ. Press.
  23. Thomann, R.V. and Mueller, J.A., 1987. Principles of Surface Water Quality Modeling and Control, Harper Collins Publishers.
  24. http://www.srh.noaa.gov/images/epz/wxcalc/rh TdFromWetBulb.pdf
  25. http://www.fao.org/docrep/X0490E/x0490e07.htm
  26. http://clearskycalculator.com/ASCE_memo.pdf