DOI QR코드

DOI QR Code

비탄성요구스펙트럼의 작성을 위한 강도감소계수 공식의 비교 평가

Comparative Evaluation of Formulas of Strength Reduction Factors for the Generation of an Inelastic Demand Spectrum

  • 조성국 ((주)제이스코리아 기술연구소) ;
  • 박웅기 ((주)제이스코리아 기술연구소) ;
  • 조양희 (인천대학교 도시환경공학부)
  • 투고 : 2011.09.15
  • 심사 : 2011.10.26
  • 발행 : 2011.12.31

초록

비탄성요구스펙트럼의 형상은 구조물의 내진성능평가 결과에 많은 영향을 미친다. 비탄성요구스펙트럼은 강도감소계수를 적용하여 탄성응답스펙트럼을 비례축소시킴으로써 얻어질 수 있다. 이 연구는 기존에 많은 연구자들이 제안한 강도감소계수의 공식을 조사하였다. 이 논문에는 과거에 제안된 공식에 따라 작성된 강도감소계수 곡선과 비탄성요구스펙트럼 곡선의 형상 및 특성을 비교하고 있다. 조사된 공식으로 작성된 강도감소계수 곡선의 평균곡선을 구하고, 회귀분석을 통하여 평균 곡선의 공식을 유도하였다. 비교 연구를 통하여, 새롭게 제안된 강도감소계수 공식에 따라 작성된 비탄성요구스펙트럼의 형상은 기존에 제안된 공식으로 생성한 비탄성요구스펙트럼의 평균곡선과 일치함을 확인하였다.

The shape of an inelastic demand spectrum may have a major impact on the seismic evaluation results of a structure. The inelastic demand spectrum could be obtained by scaling down from the elastic response spectrum by applying the strength reduction factor (SRF). This study has investigated formulas for SRFs that were suggested by numerous previous studies. This paper compares their characteristics, including the shapes of the curves of the SRFs and the inelastic demand spectra that were produced by applying the various formulas for SRFs. The mean curve was computed from the SRF curves generated by the various formulas. This study derives a new formula for the SRF curve through regression analysis. From the comparative study, it is shown that the proposed formula for the SRF can generate the mean curve of the inelastic demand spectra which have been previously suggested by others.

키워드

참고문헌

  1. Chopra, A.K., and Goel, R.K., "Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Structures: SDOF Systems," Report No. PEER-1999/02, Pacific Earthquake Engineering Research Center, University of California, Berkeley, 1999.
  2. Newmark, N.M., and Hall, W.J., "Seismic Design Criteria for Nuclear Reactor Facilities," Report 46, Building Practices for Disaster Mitigation, National Bureau of Standards, 209-236, 1973.
  3. Lai, S.P., and Biggs, J.M., "Inelastic Response Spectra for Aseismic Building Design," J. Structural Div., ASCE, Vol. 106, No. ST6, 1295-1310, 1980.
  4. Riddell, R., Hidalgo, P., and Cruz, E., "Response Modification Factors for Earthquake Resistant Design of Short Period Structures," Earthquake Spectra, Vol. 5, No. 3, 571-590, 1989. https://doi.org/10.1193/1.1585541
  5. Riddell, R., and Newmark, N.M., "Statistical Analysis of the Response of Nonlinear Systems Subjected to Earthquakes," Structural Research Series No. 468, Dept. of Civil Eng., University of Illinois, Urbana, 1979.
  6. Nassar, A.A., and Krawinkler, H., "Seismic Demands for SDOF and MDOF Systems," Report No. 95, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, California, 1991.
  7. Vidic, T., Fajfar, P., and Fischinger, M., "A Procedure for Determining Consistent Inelastic Design Spectra," Proc. Workshop on Nonlinear Seismic Analysis of RC Structures, Bled, Slovenia, July, 1992.
  8. Miranda, E., "Site-Dependent Strength Reduction Factors," J. of Structural Engineering, ASCE, Vol. 119, No. 12, 3503-3519, 1993. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3503)
  9. 송종걸, 김학수, "근거리 및 원거리 지진에 대한 비선형 구조물의 강도감소계수 산정," 대한토목학회, 제27권, 제3A호, 321-337, 2007.
  10. Miranda, E., and Bertero, V., "Evaluation of Strength Reduction Factors for Earthquake-Resistant Design," Earthquake Spectra, Vol. 10, No. 2, 357-379, 1994. https://doi.org/10.1193/1.1585778
  11. Takeda, T., Hwang, H.H.M., and Shinozuka, M., "Response Modification Factor for Multiple-Degree-of-Freedom Systems," Proc. 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, Vol. V, 129-134, 1988.
  12. Hidalgo, P.A., and Arias, A., "New Chilean Code for Earthquake Resistance Design of Buildings," Proc. 4th U.S. National Conference on Earthquake Engineering, Palm Springs, CA, Vol. 2, 927-936, 1990.
  13. Ordaz, M., and Perez-rocha, L.E., "Estimation of Strength-Reduction Factor for Elastoplastic Systems : A New Approach," Earthquake Engineering and Structural Dynamics, Vol. 27, 889-901, 1998. https://doi.org/10.1002/(SICI)1096-9845(199809)27:9<889::AID-EQE755>3.0.CO;2-W
  14. Eurocode 8, Design Provisions for Earthquake Resistance of Structures, Part 1.1 General Rules - Seismic Actions and General Requirements for Structures; Part 2 Bridges, 1996.
  15. ASCE Standard, Seismic Analysis of Safety-Related Nuclear Structures and Commentary, ASCE 4-98, American Society of Civil Engineers, 1999.