DOI QR코드

DOI QR Code

Parameterization of the Temperature-Dependent Development of Panonychus citri (McGregor) (Acari: Tetranychidae) and a Matrix Model for Population Projection

귤응애 온도발육 매개변수 추정 및 개체군 추정 행렬모형

  • Yang, Jin-Young (Faculty of Bioscience and Industry, College of Applied Life Science, Jeju Nat'l. Univ.) ;
  • Choi, Kyung-San (Agricultural Research Center for Climate Change, National Institute of Horticultural & Herbal science, Rural Development Administration) ;
  • Kim, Dong-Soon (Faculty of Bioscience and Industry, College of Applied Life Science, Jeju Nat'l. Univ.)
  • 양진영 (제주대학교 생명자원과학대학 식물자원환경전공) ;
  • 최경산 (농촌진흥청 국립원예특작과학원 온난화대응농업연구센터) ;
  • 김동순 (제주대학교 생명자원과학대학 식물자원환경전공)
  • Received : 2011.07.27
  • Accepted : 2011.09.05
  • Published : 2011.09.30

Abstract

Temperature-related parameters of Panonychus citri (McGregor) (Acarina: Tetranychidae) development were estimated and a stage-structured matrix model was developed. The lower threshold temperatures were estimated as $8.4^{\circ}C$ for eggs, $9.9^{\circ}C$ for larvae, $9.2^{\circ}C$ for protonymphs, and $10.9^{\circ}C$ for deutonymphs. Thermal constants were 113.6, 29.1, 29.8, and 33.4 degree days for eggs, larvae, protonymphs, and deutonymphs, respectively. Non-linear development models were established for each stage of P. citri. In addition, temperature-dependent total fecundity, age-specific oviposition rate, and age-specific survival rate models were developed for the construction of an oviposition model. P. citri age was categorized into five stages to construct a matrix model: eggs, larvae, protonymphs, deutonymphs and adults. For the elements in the projection matrix, transition probabilities from an age class to the next age class or the probabilities of remaining in an age class were obtained from development rate function of each stage (age classes). Also, the fecundity coefficients of adult population were expressed as the products of adult longevity completion rate (1/longevity) by temperature-dependent total fecundity. To evaluate the predictability of the matrix model, model outputs were compared with actual field data in a cool early season and hot mid to late season in 2004. The model outputs closely matched the actual field patterns within 30 d after the model was run in both the early and mid to late seasons. Therefore, the developed matrix model can be used to estimate the population density of P. citri for a period of 30 d in citrus orchards.

기존 보고된 귤응애 온도발육자료를 이용하여 온도발육 관련 매개변수 값을 추정하고 개체군 동태 추정에 필요한 행렬모형을 작성하였다. 귤응애 발육영점온도는 알 $8.4^{\circ}C$, 유충 $9.9^{\circ}C$, 제 1약충 $9.2^{\circ}C$, 제 2약충 $10.9^{\circ}C$ 이었으며, 발육완료에 필요한 적산온도는 각각 113.6, 29.1, 29.8, 33.4일도(DD)로 추정되었다. 귤응애 각 발육단계별 비선형 발육모형을 수립하였으며 또한 산란모형 작성에 필요한 온도별 총산란수 모형, 연령별 누적산란율모형, 연령별 생존율 모형의 매개변수 값을 각각 추정하였다. 귤응애 연령군을 알, 유충, 제 1약충, 제 2약충, 성충 등 5단계로 구분하여 행렬모형을 작성하였다. 전환행렬의 구성요소인 다음 발육단계로 전이확률 또는 잔존확률은 각 발육단계의 발육률 함수를 이용하였다. 또한 성충의 산란계수는 해당온도에서 성충수명 완료율과 총산란수의 곱으로 추정하였다. 수립된 행렬모형의 포장적합 능력을 평가하기 위하여 실제 감귤원에서 조사된 귤응애 실측밀도와 행렬모형으로 추정한 개체군 밀도를 비교하였다(2004년). 계절 초기 저온기와 계절중후기 고온기에 모형결과를 실측치와 비교한 결과 알 및 성충 개체군은 계절초 및 중후기 모두 약 30일까지 큰 차이가 없었다. 따라서 본 개발된 행렬모형을 이용하여 30일 내외의 단기간 동안 귤응애의 개체군밀도 증가를 예측할 수 있을 것으로 기대되었다.

Keywords

References

  1. Allen, J.C., Y.Y. Yang and J.L. Knapp. 1995. Temperature effects on development and fecundity of the citrus rust mite (Acari: Eriophydae). Environ. Entomol. 24: 996-1004. https://doi.org/10.1093/ee/24.5.996
  2. Bartlett, P.W. and A.W.A. Murray. 1986. Modeling adult survival in the laboratory of diapause and non-diapause colorado beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) from Normandy, France. Ann. Appl. Biol. 108: 487-501. https://doi.org/10.1111/j.1744-7348.1986.tb01987.x
  3. Bommarco, R. 2001. Using matrix models to explore the influence of temperature on population growth of arthropod pests. Agric. Forest. Entomol. 3: 275-283. https://doi.org/10.1046/j.1461-9555.2001.00114.x
  4. Berry, J.S., T.O. Holtzer and J.M. Norman. 1991. MiteSim - a simulation model for the banks grass mite (Acari: Tetranychidae) and the predatory mite, Neoseiulus fallacis (Acari: Phytoseiidae) on maize: model development and validation. Ecol. Model. 53: 91-117.
  5. Birley, M. 1977. The estimation of insect density and instar survivorship functions from census data. J. Anim. Ecol. 46: 497-510. https://doi.org/10.2307/3826
  6. Caswell, H. 2001. Matrix population models: construction, analysis, and interpretation. 2nd ed., 722 pp. Sinauer Associates, Inc. Publishers, Sunderland.
  7. Choi, D.S. 2006. Ecology of Panonychus citri (accessed December 2006 at http://www.wjatc.go.kr).
  8. Choi, W.I. and M.I. Ryoo. 2003. A matrix model for predicting seasonal fluctuations in field populations of Paronychiurus kimi (Collembola: Onychiruidae). Ecol. Model. 162: 259-265. https://doi.org/10.1016/S0304-3800(02)00384-8
  9. Clements, A.N. and G.D. Paterson. 1981. The analysis of mortality and survival rates in wild populations of mosquitoes. J. Appl. Ecol. 18: 373-399. https://doi.org/10.2307/2402401
  10. Curry, G.L. and R.M. Feldman. 1987. Mathematical Foundations of Population Dynamics. Mono. Ser. 3, 246 pp. Tex. Eng. Exp. Stn., College Station, TX.
  11. Dover, M.J., B.A. Croft, S.M. Welch and R.L. Tummala. 1979. Biological control of Panonychus ulmi (Acarina: Tetranychidae) by Amblyseius fallacis (Acarina: Phytoseiidae) on apples: a prey-predator model. Environ. Entomol. 8: 282-292. https://doi.org/10.1093/ee/8.2.282
  12. Eyring, H. 1935. The activated complex in chemical reactions. J. Chem. Phys. 3: 107-115. https://doi.org/10.1063/1.1749604
  13. Fukuda, J. and N. Shinkaji. 1954. Experimental studies on the influence of temperature and relative humidity upon the development of the citrus red mite. I. On the influence of temperature and relative humidity upon the development of the egg. Tokai-kinki Agric. Exp. Stn. 2: 160-171.
  14. Gotoh, T., Y. Ishikawa and Y. Kitashima. 2003. Life-history traits of the six Panonychus species from Japan (Acari: Tetranychidae). Exp. Appl. Acarol. 29: 241-252. https://doi.org/10.1023/A:1025810731386
  15. Hilbert, D.W. and J.A. Logan. 1983. Empirical model of nymphal development for migratory grasshopper, Meldnoplus sanguinipes (Orthoptera: Acrididae). Environ. Entomol. 12: 1-5. https://doi.org/10.1093/ee/12.1.1
  16. Jandel Scientific. 1996. TableCurve 2D. Automated curve fitting and equation discovery: version 4.0. Jandel Scientific, San Rafael, CA.
  17. Kasap, I. 2009. The biology and fecundity of the citrus red mite Panonychus citri (McGregor) (Acari: Tetranychidae) at different temperatures under laboratory conditions. Turk. Agric. For. 33: 593-600.
  18. Kim, D.H. and K.S. Kim. 1999. Studies on the ecology and control methods of Panonychus citri, pp. 340-361. In Annual Research Report for 1999, ed. by National Jeju Agricultural Experiment Station. 602 pp. Simindang Press, Jeju.
  19. Kim, D.-S. 2005. Comparison of population regulation of Panonychus citri by predacious mite complex between abandoned and sprayed citrus orchards in Jeju island. J. Subtropical Agri. & Biotech., Jeju Nat'l Univ. 21: 21-27.
  20. Kim, D.-S. 2007. A tentative temperature-dependent matrix model for the short-term prediction of population dynamics of Panonychus citri (Acari: Tetranychidae) in citrus orchards. J. Subtropical Agri. & Biotech., Jeju Nat'l Univ. 23: 51-57.
  21. Kim, D.-S., J.-H. Lee and M.S. Yiem. 2001. Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae), and its stage emergence models. Environ. Entomol. 30: 298-305. https://doi.org/10.1603/0046-225X-30.2.298
  22. Kim, D.-S. and J.-H. Lee. 2003a. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Eco. Model. 162: 145-153. https://doi.org/10.1016/S0304-3800(02)00402-7
  23. Kim, D.-S. and J.-H. Lee. 2003b. Oviposition model of overwintered adult Tetranychus urticae (Acari: Tetranychidae) and mite phenology on the ground cover in apple orchards. Exp. Appl. Acarol. 31: 191-209. https://doi.org/10.1023/B:APPA.0000010385.00864.28
  24. Kim, D.-S., K.S. Choi, Y.S. Jang and J.H. Song. 2009. The effects of elevated temperatures on the population phenology and abundance of citrus pests in Jeju, Korea. International Symposium on Climate Change and Insect Pest, Ramada Plaza Jeju Hotel, Jeju, Republic of Korea. 28-30 October, 2009.
  25. Lefkovitch, L.P. 1965. The study of population growth in organisms grouped by stages. Biometrics 21: 1-18. https://doi.org/10.2307/2528348
  26. Mack, T.P., J.W. Smith Jr and R.B. Reed. 1987. A mathematical model of the population dynamics of the lesser cornstalk borer, Elasmopalpus lignosellus (Lepidoptera: Pyralidae). Ecol. Model. 39: 269-286. https://doi.org/10.1016/0304-3800(87)90004-4
  27. Mack, T.P. and J.W. Smith Jr. 1992. Modeling insect recruitment. pp. 155-169. In Basics of Insect Modeling, eds. by J.L. Goodenough and J.M. McKinion. 221 pp. American Society of Agricultural Engineers, St. Joseph, MI.
  28. Madden, L.V., L.R. Nault, S.E. Heady and W.E. Styer. 1986. Effect of temperature on the population dynamics of three Dalbulus leafhopper species. Ann. Appl. Biol. 108: 475-485. https://doi.org/10.1111/j.1744-7348.1986.tb01986.x
  29. McMurtry, J.A. 1985. Citrus. pp. 339-347. In Spider mites: their biology, natural enemies and control, vol. 1B, eds. by W. Helle and W. Sabelis. 458 pp. Elsevier, Amsterdam.
  30. Readshaw, J. L. and A.C.M. Van Gerwen. 1983. Age-specific survival, fecundity and fertility of the adult blowfly in relation to crowding, protein food and population cycles. J. Anim. Ecol. 52: 879-887. https://doi.org/10.2307/4461
  31. Richards, F.J. 1959. A flexible growth function for empirical use. J. Exp. Bot. 10: 290-300. https://doi.org/10.1093/jxb/10.2.290
  32. Shaffer, P.L. and H.J. Gold. 1985. A simulation model of population dynamics of the codling moth, Cydia pomonella. Ecol. Model. 30: 247-274. https://doi.org/10.1016/0304-3800(85)90070-5
  33. Song, J.H., C.H. Lee, S.H. Kang, D.H. Kim, S.Y. Kang and K.Z. Riu. 2001. Dispersion indices and sequential sampling plan for the citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae) on satsuma mandarin on Jeju island. Kor. J. Appl. Entomol. 40: 105-109.
  34. Takafuji, A. 1983. Diapause attributes and seasonal occurrences of two populations of the citrus red mite, Panonychus citri (McGregor) on pear (Acarina: Tetranychidae). Appl. Ent. Zool. 18: 525-532.
  35. Taylor, F. 1981. Ecology and evolution of physiological time in insects. Am. Nat. 117: 1-23. https://doi.org/10.1086/283683
  36. University of California (UC). 2011. UC IPM phenology model data base: citrus red mite (accessed July 2011 at http://www.ipm.ucdavis.edu/index.html).
  37. Wagner, T.L., H. Wu, P.J.H. Shrape and R.N. Coulson. 1984. Modeling distribution of insect development time: a literature review an application of Weibull function. Ann. Entomol. Soc. Am. 77: 475-487. https://doi.org/10.1093/aesa/77.5.475
  38. Yasuda, M. 1982. Influence of temperature on some of the life cycle parameters of the citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae). Jap. J. Appl. Ent. Zool. 26: 52-57. https://doi.org/10.1303/jjaez.26.52

Cited by

  1. Temperature-driven models of Aculops pelekassi (Acari: Eriophyidae) based on its development and fecundity on detached citrus leaves in the laboratory vol.17, pp.2, 2014, https://doi.org/10.1016/j.aspen.2013.12.005