DOI QR코드

DOI QR Code

Comparison of Cuticular Hydrocarbons of Different Developmental Stages of the Spot Clothing Wax Cicada, Lycorma delicatula (Hemiptera: Fulgoridae)

꽃매미(Lycorma delicatula)의 발육단계별 표피탄화수소 비교

  • Cho, Sun-Ran (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University) ;
  • Lee, Jeong-Eun (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University) ;
  • Jeong, Jin-Won (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University) ;
  • Yang, Jeong-Oh (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University) ;
  • Yoon, Chang-Mann (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University) ;
  • Kim, Gil-Hah (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University)
  • 조선란 (충북대학교 농업생명환경대학 식물의학과) ;
  • 이정은 (충북대학교 농업생명환경대학 식물의학과) ;
  • 정진원 (충북대학교 농업생명환경대학 식물의학과) ;
  • 양정오 (충북대학교 농업생명환경대학 식물의학과) ;
  • 윤창만 (충북대학교 농업생명환경대학 식물의학과) ;
  • 김길하 (충북대학교 농업생명환경대학 식물의학과)
  • Received : 2011.05.31
  • Accepted : 2011.07.20
  • Published : 2011.09.30

Abstract

Aliphatic cuticular hydrocarbons (CHCs) of different developmental stages of the spot clothing wax cicada, Lycorma delicatula (Hemiptera: Fulgoridae) were analyzed using GC and GC-MS. The numbers of carbons in the major CHCs of each developmental stage 32, 33, 28, 38, 37 in the egg, 1st, 2nd, 3rd, and 4th instar nymphal stages, and adults, respectively. The cuticle of Lycorma delicatula contains mainly methyl-branched 9-methylheptacosane (15.11%) in the egg stage, and a high proportion of n-heptacosane in nymphal stages (15.75, 22.42, 25.04, and 23.11 % in the 1st, 2nd, 3rd and 4th instars, respectively). In contrast, male and female adults had high proportions of n-nonacosane (13.42 and 16.55%). The chemical constituents of CHCs were classified into five groups (n-alkanes, monomethylalkanes, dimethylalkanes, trimethylalkanes, olefins) and group profiles of each developmental stage were compared. Egg surface was composed mainly monomethylalkanes (45.39%), a saturated hydrocarbon. Nymph CHCs consisted primarily of n-alkanes (37.63 to 46.12%). There was a difference between adult male and female CHCs. However, both contained n-alkanes and monomethylalkanes. CHCs with trimethyl or double bonded structure were rare in all stages.

꽃매미의 발육단계별 표피탄화수소를 비교하기 위하여 GC와 GC-MS를 이용하여 분석하였다. 분석된 꽃매미의 표피탄화수소의 종류는 알이 32종, 약충은 령별로 각각 33, 28, 38, 37종이었고 2령 약충에서 가장 적게 나타났다. 반면 성충은 암 수 모두 46종으로 동일하였으며, 꽃매미의 충태 중 가장 많은 종류의 탄화수소를 함유하고 있었다. 발육단계별 물질 함량을 분석한 결과, 알은 메틸기를 갖고 있는 9-methylheptacosane을 가장 많이 함유하고 있었으며(15.11%), 령기별 약충은 n-heptacosane을 가장 많이 함유하고 있었다(15.75, 22.42, 25.04, 23.11%). 반면 성충은 암 수 모두 n-nonacosane을 가장 많이 함유하고 있었다(13.42, 16.55%). 표피탄화수소의 구성물질을 5개 그룹(n-alkanes, monomethylalkanes, dimethylalkanes, trimethylalkanes, olefins)으로 나누고 물질 함량을 꽃매미 발육단계별로 비교하였다. 꽃매미의 알 표피는 대부분이 monomethylalkanes인 포화탄화수소로 이루어져 있고(45.39%), 약충은 포화탄화수소의 기본구조인 n-alkanes이 대부분이었다(37.63-46.12%). 또한 성충은 암 수에 따라 차이가 있었지만, n-alkanes과 monomethylalkanes을 고루 함유하는 것으로 나타났다. 반면 모든 충태에서, 3개이상의 메틸기를 갖거나 이중 결합을 포함하는 구조는 극히 적었다.

Keywords

References

  1. Akino, T. 2006. Cuticular hydrocarbons of Formica truncorum (Hymenoptera: Formicidae): Description of new very long chained hydrocarbon components. Appl. Entomol. Zool. 41: 667-677. https://doi.org/10.1303/aez.2006.667
  2. Bernier, U.R., D.A. Carlson and C.J. Geden. 1998. Gas chromatography/ mass spectrometry analysis of the cuticular hydrocarbons from parasitic wasps of the genus Muscidifurax. J. Am. Soc. Mass Spectrom. 9: 320-332. https://doi.org/10.1016/S1044-0305(97)00288-2
  3. Barbour, J.D., E.S. Lacey and L.M. Hanks. 2007. Cuticular hydrocarbons mediate mate recognition in a species of longhorned beetle (Coleoptera: Cerambycidae) of the primitive subfamily prioninae. Ann. Entomol. Soc. Am. 100: 333-338. https://doi.org/10.1603/0013-8746(2007)100[333:CHMMRI]2.0.CO;2
  4. Blomquist, G.J., D.R. Nelson and M. de Renobales. 1987. Chemistry, biochemistry, and physiology of insect cuticular lipids. Arch. Insect Biochem. Physiol. 6: 227-265. https://doi.org/10.1002/arch.940060404
  5. Boo, K.S. 2001. Insect physiology. Seongmunsa Co. Publishing.
  6. Boroczky, K., K.C. Park, R.D. Minard, T.H. Jones, T.C. Baker and J.H. Tumlinson. 2008. Differences in cuticular lipid composition of the antennae of Helicoverpa zea, Heliothis virescens, and Manduca sexta. J. Insect Physiol. 54: 1385-1391. https://doi.org/10.1016/j.jinsphys.2008.07.010
  7. Cuvillier-Hot, V., M. Cobb, C. Malosse and C. Peeters. 2001. Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J. Chem. Ecol. 47: 485-493.
  8. Darrouzet, E., S. Lebreton, N. Gouix, A. Wipf and A.G. Bagneres. 2010. Parasitoids modify their oviposition behavior according to the sexual origin of conspecific cuticular hydrocarbon traces. J. Chem. Ecol. 36: 1092-1100. https://doi.org/10.1007/s10886-010-9845-8
  9. Everaerts, C., J-P. Farine, M. Cobb and J-F. Ferveur. 2010. Drosophila cuticular hydrocarbons revisited: Mating status alters cuticular profiles. PLoS ONE 5(3): e9607. doi:10.1371/journal.pone.0009607.
  10. Fan, Y., D. Eliyahu and C. Schal. 2008. Cuticular hydrocarbons as maternal provisions in embryos and nymphs of the cockroach Blattella germanica. J. Exp. Biol. 211: 548-554. https://doi.org/10.1242/jeb.009233
  11. Gamboa, G.J. 2004. Kin recognition in eusocial wasps. Ann. Zool. Fennici 41: 789-808.
  12. Gibbs, A.G., F. Fukuzato and L.M. Matzkin. 2003. Evolution of water conservation mechanisms in Drosophila. J. Exp. Biol. 206: 1183-1192. https://doi.org/10.1242/jeb.00233
  13. Han, J.M., H. Kim, E.J. Lim, S. Lee, Y.J. Kwon and S. Cho. 2008. Lycorma delicatula (Hemiptera: Auchenorrhyncha: Fulgoridae: Aphaeninae), finally, but suddenly arrived in Korea. Entomol. Res. 38: 281-286. https://doi.org/10.1111/j.1748-5967.2008.00188.x
  14. Hefetz, A., J. Tengö, G. Lübke and W. Francke. 1993. Inter-colonial and intra-colonial variation in Dufour's gland secretion in the bumblebee species Bombus hypnorum (Hymenoptera: Apidae). pp. 469-480. In Advances in life sciences. Sensory Systems of Arthropods, eds. by K. Weise, F.G. Gribakin, and G. Renninger. pp. 469-480. Birkhause Verlag, Basel, Switzerland.
  15. Howard, R.W., C.A. McDaniel, D.R. Nelson, G.J. Blomquist, L.T. Gelbaum and L.H. Zalkow. 1982. Cuticular hydrocarbons of Reticulitermes virginicus (Banks) and their role as potential speciesand caste-recognition cues. J. Chem. Ecol. 8: 1227-1239. https://doi.org/10.1007/BF00990755
  16. Howard, R.W. 1993. Cuticular hydrocarbons and chemical communication. pp.179-226. In Insectlipids:chemistry, biochemistry and biology eds. D.W. Stanley-Samuelson and D.R. Nelson, University of Nebraska Press, Lincoln, Nebraska.
  17. Haverty, M.I., L.J. Nelson and M. Page. 1990. Cuticular hydrocarbons of four populations of Coptotermes formosanus shiraki in the united states similarities and origins of introductions. J. Chem. Ecol. 16: 1635-1647. https://doi.org/10.1007/BF01014096
  18. Jurenka, R.A. and M. Subchev. 2000. Identification of cuticular hydrocarbons and the alkene precursor to the pheromone in hemolymph of the female gypsy moth, Lymantria dispar. Arch. insect Biochem. Physiol. 43: 108-115. https://doi.org/10.1002/(SICI)1520-6327(200003)43:3<108::AID-ARCH2>3.0.CO;2-V
  19. Kaib, M., P. Jmhasly, L. Wilfert, W. Durka, S. Franke, W. Francke, R.H. Leuthold and R. Brandl. 2004. Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. J. Chem. Ecol. 30: 365-385. https://doi.org/10.1023/B:JOEC.0000017983.89279.c5
  20. Kather, R., F.P. Drijfhout and S.J. Martin. 2011. Task group differences in cuticular lipids in the honey bee Apis mellifera. J. Chem. Ecol. DOI 10.1007/s10886-011-9909-4.
  21. Kim, J.S., M.K. Kim, J.H. Han, C.M. Yoon, K.S. Choi, S.C. Shin and G.H. Kim. 2006. Possible presence of pheromone in mating behavior of the pine sawyer Monochamus saltuarius Gebler (Coleoptera:Cerambycidae). J. Asia-Pacific Entomol. 9: 347-352. https://doi.org/10.1016/S1226-8615(08)60313-1
  22. Kim, Y.K., D.R. Philips, T. Chao and L. Ehrman. 2004. Developmental isolation and subsequent adult behavior of Drosophila paulistorum. VI. Quantitative variation in cuticular hydrocarbon. Behavior Genetics 34: 385-394. https://doi.org/10.1023/B:BEGE.0000023644.87050.1a
  23. Lee, C.J., J.Y. Shen, S.C. Park and J.H. Shim. 2003. Chemical analysis of cuticular hydrocarbons in Apis mellifera L. and Apis ceranea F. Korean J. Appl. Entomol. 42: 9-13.
  24. Lee, J.E., S.R. Moon, H.G. Ahn, S.R. Cho, J.O. Yang, C.M. Yoon and G.H. Kim. 2009. Feeding behavior of Lycorma delicatula (Hemiptera: Fulgoridae) and response on feeding stimulants of some plants. Korean J. Appl. Entomol. 48: 467-477. https://doi.org/10.5656/KSAE.2009.48.4.467
  25. Lee, J.E., E.H. Kim, C.M. Yoon and G.H. Kim. 2010. Comparison of cuticular hydrocarbons of the pine sawyer (Monochamus saltuarius), Japanese pine sawyer (Monochamus alternatus) and oak longicorn beetle (Moechotypa diphysis). Korean J. Appl. Entomol. 49: 211-218. https://doi.org/10.5656/KSAE.2010.49.3.211
  26. Martin, S. and F. Drijfhout. 2009. A review of ant cuticular hydrocarbons. J. Chem. Ecol. 35: 1151-1161. https://doi.org/10.1007/s10886-009-9695-4
  27. Nelson, D.R. 1993. Methyl-branched lipids in insects. pp. 271-315. In Insect lipids: Chemistry, biochemistry and biology, eds. by D.W. Stanley-samuelson and D.R. Nelson. University of Nebraska Press, Lincoln, Nebraska.
  28. Nelson, D.R. and L.D. Charlet. 2003. Cuticular hydrocarbons of the sunflower beetle, Zygogramma exclamationis. Comp. Biochem. Physiol. B 135: 273-284. https://doi.org/10.1016/S1096-4959(03)00080-0
  29. Lommelen, E., Johnson, C.A., Drijfhout, F.P., Billen, J., Wenseleers, T. and B. Gobin. 2006. Cuticular hydrocarbons provide reliable cues of fertility in the ant Gnamptogenys striatula. J. Chem. Ecol. 32: 2023-2034. https://doi.org/10.1007/s10886-006-9126-8
  30. Lucas, C., D.B., Pho, J.M. Jallon and D. Fresneau. 2005. Role of cuticular hydrocarbons in the chemical recognition between ant species in the Pachycondyla villosa species complex. J. Insect Physiol. 51: 1148-1157. https://doi.org/10.1016/j.jinsphys.2005.06.003
  31. Nunes, T.M., I.C.C. Turatti, S. Mateus, F.S. Nascimento, N.P. Lopes and R. Zucchi. 2009. Cuticular hydrocarbons in the stingless bee Schwarziana quadripunctata (Hymenoptera, Apidae, Meliponini): differences between colonies, castes and age. Gen. Mol. Res. 2: 589-595.
  32. Page, M., L.J. Nelson, G.J. Blomquist and S.J. Seybold. 1997. Cuticular hydrocarbons as chemotaxonomic characters of pine engraver beetles (Ips spp.) in the grandicollis subgeneric group. J. Chem. Ecol. 23: 1053-1099. https://doi.org/10.1023/B:JOEC.0000006388.92425.ec
  33. Park, J.D., M.Y. Kim, S.G. Lee, S.C. Shin, J.H. Kim and I.K. Park. 2009. Biological characteristics of Lycorma delicatula and the control effects of some insecticides. Korean J. Appl. Entomol. 48: 53-57. https://doi.org/10.5656/KSAE.2009.48.1.053
  34. Said, I., G. Costagliola, I. Leoncini and C. Rivault. 2005a. Cuticular hydrocarbon profiles and aggregation in four Periplaneta species (Insecta: Dictyoptera). J. Insect Physiol. 51: 995-1003. https://doi.org/10.1016/j.jinsphys.2005.04.017
  35. Said, I., C. Gaertner, M. Renou and C. Rivault. 2005b. Perception of cuticular hydrocarbons by the olfactory organs in Periplaneta americana (L.) (Insecta: Dicyoptera). J. Insect Physiol. 51: 1384-1389. https://doi.org/10.1016/j.jinsphys.2005.09.001
  36. Shin, Y.H., S.R. Moon, C.M. Yoon, K.S. Ahn and G.H. Kim. 2010. Insecticidal Activity of 26 insecticides against eggs and nymphs of Lycorma delicatula (Hemiptera: Fulgoridae). Korean J. Appl. Entomol. 14: 157-163.
  37. Smith, A.A., B. Holldober and J. Liebig. 2009. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Current Biol. 19: 78-81. https://doi.org/10.1016/j.cub.2008.11.059
  38. Torres, C.W., M. Brandt and N.D. Tsutsui. 2007. The role of cuticular hydrocarbons as chemical cues for nestmate recognition in the invasive Argentine ant (Linepithema humile). Insect. Soc. 54: 363-373. https://doi.org/10.1007/s00040-007-0954-5
  39. Urech, R., G.W. Brown, C.J. Moore and P.E. Green. 2005. Cuticular hydrocarbons of buffalo fly, Haematobia exigua, and chemotaxonomic differentiation from horn fly, H. irritans. J. Chem. Ecol. 31: 2451-2461. https://doi.org/10.1007/s10886-005-7112-1
  40. Uva, P., J.-L. Clément and A.-G. Bagnères. 2004. Colonial and geographic variations in agonistic behavior, cuticular hydrocarbons and mtDNA of Italian populations of Reticulitermes lucifugus (Isoptera, Rhinotermitidae). Insect Soc. 51: 163-170. https://doi.org/10.1007/s00040-003-0728-7
  41. Wagner, D., M. Tissot, W. Cuevas and D.M. Gordon. 2000. Harvester ants utilize culticular hydrocarbons in nestmate recognition. J. Chem. Ecol. 26: 2245-2257. https://doi.org/10.1023/A:1005529224856
  42. Yew, J.Y., R.B. Cody and E.A. Kravitz. 2008. Cuticular hydrocarbon analysis of an awake behaving fly using direct analysis in real-time time-of-flight mass spectrometry. PNAS 105(20): 7135-7140. https://doi.org/10.1073/pnas.0802692105
  43. Yusuf, A.A., C.W.W. Pirk, R.M. Crewe, P.G.N. Njagi, I. Gordon and B. Torto. 2010. Nestmate recognition and the role of cuticular hydrocarbons in the African termite raiding ant Pachycondyla analis. J. Chem. Ecol. 36: 441-448. https://doi.org/10.1007/s10886-010-9774-6
  44. Xiao, G. 1991. Forest insect of China, forest research institute. 1361pp. Chinese Academy of Forestry, Beijing.